Crop rotation is a management practice with high greenhouse gas (GHG) mitigating potential that is often neglected due to economic influences. Three long-term rotation studies in Wisconsin were selected to assess the potential opportunities for mitigating GHG emissions by comparing the temporal and spatial variability of N O, CO , and CH emissions in continuous corn (CC) (Zea mays L.), corn-soybean (CS) [Glycine max (L.) Merr.], and corn-soybean-wheat (CSW) (Triticum aestivum L.) using a static chamber method. GHG emissions were influenced by weather conditions and following nitrogen (N) application during a 3-year measurement period. In high N input environments at Arlington and Lancaster, N O emissions in CC were 5.80 and 4.40 kg N ha , respectively, which was much higher than the emissions in CS and CSW rotations that ranged from 1.52 to 3.33 kg N ha . In the low N input environment at Marshfield, N O emissions were not statistically different among CC, CS, and CSW rotations (1.20-1.66 kg N ha ). Yield-scaled N O emissions were not different among crop rotations. When pooled over locations, CO emissions were highest in CC (4.16 Mg C ha ) and were similar in CS and CSW (3.71 and 3.50 Mg C ha , respectively). Soils either emitted or absorbed small and inconsistent amounts of CH . These results provide important insights as to how weather conditions and differences among management practices affect GHG emissions and show that application of either 2-year CS or 3-year CSW rotation can be equally effective in reducing N O emissions compared to CC, especially with high N applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jeq2.20519 | DOI Listing |
iScience
January 2025
Chair of Sustainable Engineering, Technische Universität Berlin, Berlin, Germany.
The climate impact of data centers is expected to increase due to rising demand for information and communication technology services. At the same time, the European Union aims for climate neutral data centers by 2030. To map potential developments of emissions associated with data centers to the year 2030, we develop a generic data center greenhouse gas (GHG) inventory in accordance with the GHG protocol.
View Article and Find Full Text PDFHealthc Manage Forum
January 2025
University of Toronto, Toronto, Ontario, Canada.
Healthcare is a surprisingly large contributor to climate change, responsible for a significant quantity of global Greenhouse Gas (GHG) emissions. Global commitments to achieve "net zero" health systems, including by the federal government in Canada, suggest a growing need to understand and mobilize capacity for GHG emissions estimation across Canada's health sector. Our analysis highlights efforts by public sector healthcare organizations in Canada to estimate an increasingly broad scope of GHG emissions, building on longstanding efforts to report or reduce energy-related emissions from facilities.
View Article and Find Full Text PDFiScience
January 2025
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
In 2022, the European Union put forward the REPowerEU plan in response to Russia's invasion of Ukraine, aiming at enhancing short-term energy security by diversifying imports and reducing natural gas demand while accelerating the deployment of renewable alternatives in the long term. Here, we quantify the life cycle environmental impacts of both REPowerEU's short-term measures, including the controversial extended coal-fired power plant operations, and how the first year of the crisis was managed in practice. We find that the policy measures' impact on greenhouse gas (GHG) emissions would be negligible, although they could have detrimental effects on other environmental categories.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Desalination Technology Institute, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia.
Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.
View Article and Find Full Text PDFSci Rep
January 2025
College of Ecology and Environment, Hainan University, Haikou, 570228, China.
Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!