The use of diagnostic radiation in medical centers has spread due to the incidence of various diseases. Thus, it is essential that patients and medical staff wear protective clothing to protect themselves from their harmful effects. In the past, lead protective clothing has been used; however, the toxicity and heaviness of lead have limited the tendency to use these clothing. Recently, nanocomposites containing heavy element nanoparticles have been introduced as an alternative to lead coatings. In this study, hybrid nanocomposites containing ceria (CeO), alumina (AlO), and graphene oxide (GO) nanoparticles were studied for this purpose. Ceria, alumina, and graphene oxide nanoparticles were mixed with polyethylenevinylacetate (EVA) dissolved in chloroform and casted on a glass plate to form nanocomposite films. The prepared nanoparticles and films were characterized by Fourier Transform Infrared Spectroscopy, Field Emission Scanning Electron Microscope, Thermal Gravimetric Analysis, and Energy Dispersive X-ray Analysis, and then the attenuation properties of the films against high-energy radiation (120 kV) were studied in two narrow and broad beam geometries. The results showed that hybrid films, despite having a lower percentage of nanoparticles, showed better attenuation properties, which indicated the synergistic effect of nanoparticles with different mechanisms in attenuating the radiations. The attenuation ability of these films was considerable due to their lower density compared to lead. The fabricated hybrid nanocomposite films with a suitable performance in attenuation of high-energy radiations used in therapeutic diagnostics, can be proposed as a suitable alternative to conventional lead clothing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517928PMC
http://dx.doi.org/10.1038/s41598-023-43212-9DOI Listing

Publication Analysis

Top Keywords

attenuation properties
12
hybrid nanocomposite
8
protective clothing
8
graphene oxide
8
oxide nanoparticles
8
nanocomposite films
8
nanoparticles
7
films
6
attenuation
5
lead
5

Similar Publications

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

X-ray Responsive Antioxidant Drug-Free Hydrogel for Treatment of Radiation Skin Injury.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.

Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.

View Article and Find Full Text PDF

Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.

View Article and Find Full Text PDF

Transforming Bacterial Pathogens into Wonder Tools in Cancer Immunotherapy.

Mol Ther

January 2025

College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea. Electronic address:

Cancer immunotherapy has revolutionized cancer treatment due to its precise, target-specific approach compared to conventional therapies. However, treating solid tumors remains challenging as these tumors are inherently immunosuppressive, and their tumor microenvironment (TME) often limits therapeutic efficacy. Interestingly, certain bacterial species offer a promising alternative by exhibiting an innate ability to target and proliferate within tumor environments.

View Article and Find Full Text PDF

Measurement and Analysis of Optical Transmission Characteristics of the Human Skull.

J Biophotonics

January 2025

Department of Emergency, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.

The brain, as a vital part of central nervous system, receives approximately 25% of body's blood supply, making accurate monitoring of cerebral blood flow essential. While fNIRS is widely used for measuring brain physiology, complex tissue structure affects light intensity, spot size, and detection accuracy. Many studies rely on simulations with limited experimental validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!