The double-ring AAA+ ATPase Pex1/Pex6 is required for peroxisomal receptor recycling and is essential for peroxisome formation. Pex1/Pex6 mutations cause severe peroxisome associated developmental disorders. Despite its pathophysiological importance, mechanistic details of the heterohexamer are not yet available. Here, we report cryoEM structures of Pex1/Pex6 from Saccharomyces cerevisiae, with an endogenous protein substrate trapped in the central pore of the catalytically active second ring (D2). Pairs of Pex1/Pex6(D2) subdomains engage the substrate via a staircase of pore-1 loops with distinct properties. The first ring (D1) is catalytically inactive but undergoes significant conformational changes resulting in alternate widening and narrowing of its pore. These events are fueled by ATP hydrolysis in the D2 ring and disengagement of a "twin-seam" Pex1/Pex6(D2) heterodimer from the staircase. Mechanical forces are propagated in a unique manner along Pex1/Pex6 interfaces that are not available in homo-oligomeric AAA-ATPases. Our structural analysis reveals the mechanisms of how Pex1 and Pex6 coordinate to achieve substrate translocation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518020PMC
http://dx.doi.org/10.1038/s41467-023-41640-9DOI Listing

Publication Analysis

Top Keywords

pex1/pex6
5
structure peroxisomal
4
peroxisomal pex1/pex6
4
pex1/pex6 atpase
4
atpase complex
4
complex bound
4
substrate
4
bound substrate
4
substrate double-ring
4
double-ring aaa+
4

Similar Publications

Zellweger syndrome; identification of mutations in and gene in Saudi families.

Ann Med

December 2025

Department of Basic Medical Sciences, College of Medicine & Center for Genetics and Inherited Diseases, Taibah University Medina, Medina, Saudi Arabia.

Background: Peroxisome biogenesis disorders (PBD) affect multiple organ systems. It is characterized by neurological dysfunction, hypotonia, ocular anomalies, craniofacial abnormalities, and absence of peroxisomes in fibroblasts. PBDs are associated with mutations in any of fourteen different genes, which are involved in peroxisome biogenesis.

View Article and Find Full Text PDF

PEX1 remains functional in peroxisome biogenesis but is rapidly degraded by the proteasome.

bioRxiv

December 2024

Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.

The PEX1/PEX6 AAA-ATPase is required for the biogenesis and maintenance of peroxisomes. Mutations in and disrupt peroxisomal matrix protein import and are the leading cause of Peroxisome Biogenesis Disorders (PBDs). The most common disease-causing mutation in PEX1 is the PEX1 allele, which results in a reduction of peroxisomal protein import.

View Article and Find Full Text PDF

PEX1 is essential for glycosome biogenesis and trypanosomatid parasite survival.

Front Cell Infect Microbiol

March 2024

Department of Systems Biochemistry, Faculty of Medicine, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany.

Trypanosomatid parasites are kinetoplastid protists that compartmentalize glycolytic enzymes in unique peroxisome-related organelles called glycosomes. The heterohexameric AAA-ATPase complex of PEX1-PEX6 is anchored to the peroxisomal membrane and functions in the export of matrix protein import receptor PEX5 from the peroxisomal membrane. Defects in PEX1, PEX6 or their membrane anchor causes dysfunction of peroxisomal matrix protein import cycle.

View Article and Find Full Text PDF

The N1 domain of the peroxisomal AAA-ATPase Pex6 is required for Pex15 binding and proper assembly with Pex1.

J Biol Chem

January 2024

Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, USA. Electronic address:

The heterohexameric ATPases associated with diverse cellular activities (AAA)-ATPase Pex1/Pex6 is essential for the formation and maintenance of peroxisomes. Pex1/Pex6, similar to other AAA-ATPases, uses the energy from ATP hydrolysis to mechanically thread substrate proteins through its central pore, thereby unfolding them. In related AAA-ATPase motors, substrates are recruited through binding to the motor's N-terminal domains or N terminally bound cofactors.

View Article and Find Full Text PDF

The heterohexameric AAA-ATPase Pex1/Pex6 is essential for the formation and maintenance of peroxisomes. Pex1/Pex6, similar to other AAA-ATPases, uses the energy from ATP hydrolysis to mechanically thread substrate proteins through its central pore, thereby unfolding them. In related AAA-ATPase motors, substrates are recruited through binding to the motor's N-terminal domains or N-terminally bound co-factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!