Mice have emerged as a widely employed model for investigating various retinal diseases. However, the availability of comprehensive datasets capturing the entire developmental and aging stages of the mouse retina, particularly during the elderly period, encompassing integrated lncRNA and mRNA expression profiles, is limited. In this study, we assembled a total of 18 retina samples from mice across 6 distinct stages of development and aging (5 days, 3 weeks, 6 weeks, 10 weeks, 6 months, and 15 months) to conduct integrated lncRNA and mRNA sequencing analysis. This invaluable dataset offers a comprehensive transcriptomic resource of mRNA and lncRNA expression profiles during the natural progression of retinal development and aging. The discoveries stemming from this investigation will significantly contribute to the elucidation of the underlying molecular mechanisms associated with various retinal diseases, such as congenital retinal dysplasia and retinal degenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518015 | PMC |
http://dx.doi.org/10.1038/s41597-023-02562-9 | DOI Listing |
Alzheimers Dement
December 2024
Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
Background: Glaucoma is characterized by progressive optic nerve degeneration that results in irreversible blindness, and it can be considered a neurodegenerative disorder of both the eye and the brain. Increasing evidence suggest that glaucoma shares some common neurodegenerative pathways with Frontotemporal Lobar Degeneration (FTLD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD) among others. Interestingly, a recent study revealed the presence of abnormal TAR DNA-binding protein 43 (TDP-43) inclusions and aggregates in retinal ganglion cells and other retinal cell types in FTLD-TDP patients; however, the significance of this pathology and its impact on retinal function and optical nerve integrity is unknown.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Stark Neurosciences Research Institute, Department of Neurology, Indianapolis, IN, USA.
Background: Diagnosis of Alzheimer's disease (AD) via MRI is costly and can be limited by regional availability. With the recent advancements and discovery of amyloid in the retina, diagnosis of AD and the effect of AD pathology on the retina is becoming well characterized. However, the prevalence of vascular contributions to cognitive impairment and dementia (VCID) and its effects on the retina are less well known.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of British Columbia, Vancouver, BC, Canada.
Background: An imbalance between the production and clearance of amyloid beta (Aß) has emerged as a major cause of sporadic Alzheimer's disease (AD). Retinal wholemount studies can identify cell-specific involvement in Aß clearance mechanisms which cannot be accomplished in the brain ex vivo.
Methods: Eye cross-sections of double transgenic (Tg, APP-PS1) and non-carrier sibling female mice (n = 16, 4 per group) at 3- and 9- month ages were probed with antibodies 6E10 (Aβ1-16 amino-acid residues, soluble and insoluble species), ionized calcium-binding adapter molecule 1 (IBA1, microglia/macrophage), glial fibrillary acidic protein (GFAP, astrocytes), glutamine synthetase (GS, Müller cells) and aquaporin-4 (AQP4, membrane water channel) using immunofluorescence.
Alzheimers Dement
December 2024
The Jackson Laboratory, Bar Harbor, ME, USA.
Background: Mechanisms driving cerebrovascular decline during Alzheimer's disease and related dementias (ADRD) are poorly understood. Methylenetetrahydrofolate reductase (MTHFR) is an enzyme in the folate/methionine pathway. Variants in MTHFR, notably 677C>T, are associated with ADRD.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Introduction: Late-onset Alzheimer's Disease (LOAD) is the predominant form of Alzheimer's disease (AD), and apolipoprotein E (APOE) ε4 is a strong genetic risk factor for LOAD. As an integral part of the central nervous system, the retina displays a variety of abnormalities in LOAD. Our study is focused on age-dependent retinal impairments in humanized APOE4-knock-in (KI) and APOE3-KI mice developed by the Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease (MODEL-AD) consortium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!