A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synchronization of passes in event and spatiotemporal soccer data. | LitMetric

The majority of soccer analysis studies investigates specific scenarios through the implementation of computational techniques, which involve the examination of either spatiotemporal position data (movement of players and the ball on the pitch) or event data (relating to significant situations during a match). Yet, only a few applications perform a joint analysis of both data sources despite the various involved advantages emerging from such an approach. One possible reason for this is a non-systematic error in the event data, causing a temporal misalignment of the two data sources. To address this problem, we propose a solution that combines the SwiftEvent online algorithm (Gensler and Sick in Pattern Anal Appl 21:543-562, 2018) with a subsequent refinement step that corrects pass timestamps by exploiting the statistical properties of passes in the position data. We evaluate our proposed algorithm on ground-truth pass labels of four top-flight soccer matches from the 2014/15 season. Results show that the percentage of passes within half a second to ground truth increases from 14 to 70%, while our algorithm also detects localization errors (noise) in the position data. A comparison with other models shows that our algorithm is superior to baseline models and comparable to a deep learning pass detection method (while requiring significantly less data). Hence, our proposed lightweight framework offers a viable solution that enables groups facing limited access to (recent) data sources to effectively synchronize passes in the event and position data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518005PMC
http://dx.doi.org/10.1038/s41598-023-39616-2DOI Listing

Publication Analysis

Top Keywords

position data
16
data sources
12
data
11
passes event
8
event data
8
synchronization passes
4
event
4
event spatiotemporal
4
spatiotemporal soccer
4
soccer data
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!