Single-molecule Real-time Isoform Sequencing (Iso-seq) of transcriptomes by PacBio can generate very long and accurate reads, thus providing an ideal platform for full-length transcriptome analysis. We present an integrated computational toolkit named TAGET for Iso-seq full-length transcript data analyses, including transcript alignment, annotation, gene fusion detection, and quantification analyses such as differential expression gene analysis and differential isoform usage analysis. We evaluate the performance of TAGET using a public Iso-seq dataset and newly sequenced Iso-seq datasets from tumor patients. TAGET gives significantly more precise novel splice site prediction and enables more accurate novel isoform and gene fusion discoveries, as validated by experimental validations and comparisons with RNA-seq data. We identify and experimentally validate a differential isoform usage gene ECM1, and further show that its isoform ECM1b may be a tumor-suppressor in laryngocarcinoma. Our results demonstrate that TAGET provides a valuable computational toolkit and can be applied to many full-length transcriptome studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518008PMC
http://dx.doi.org/10.1038/s41467-023-41649-0DOI Listing

Publication Analysis

Top Keywords

full-length transcriptome
8
computational toolkit
8
gene fusion
8
differential isoform
8
isoform usage
8
taget
5
isoform
5
taget toolkit
4
toolkit analyzing
4
full-length
4

Similar Publications

Gene Fusion Detection in Long-Read Transcriptome Datasets from Multiple Cancer Cell Lines.

Front Biosci (Landmark Ed)

December 2024

Graduate School of Information Science and Technology, Osaka University, 565-0871 Suita, Osaka, Japan.

Background: Fusion genes are important biomarkers in cancer research because their expression can produce abnormal proteins with oncogenic properties. Long-read RNA sequencing (long-read RNA-seq), which can sequence full-length mRNA transcripts, facilitates the detection of such fusion genes. Several tools have been proposed for detecting fusion genes in long-read RNA-seq datasets derived from cancer cells.

View Article and Find Full Text PDF

Introduction: Orchids are renowned for their intricate floral structures, where sepals and petals contribute significantly to ornamental value and pollinator attraction. In Section , the distinctive curvature of these floral organs enhances both aesthetic appeal and pollination efficiency. However, the molecular and cellular mechanisms underlying this trait remain poorly understood.

View Article and Find Full Text PDF

The duck industry is vital for supplying high-quality protein, making research into the development of duck skeletal muscle critical for improving meat and egg production. In this study, we leveraged Oxford Nanopore Technologies (ONT) sequencing to perform full-length transcriptome sequencing of myoblasts harvested from the leg muscles of duck embryos at embryonic day 13 (E13), specifically examining both the proliferative (GM) and differentiation (DM) phases. Our analysis identified a total of 5797 novel transcripts along with 2332 long non-coding RNAs (lncRNAs), revealing substantial changes in gene expression linked to muscle development.

View Article and Find Full Text PDF

Full-length transcriptome sequencing of seven tissues of GuShi chickens.

Poult Sci

December 2024

College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China.; The Shennong Laboratory, Zhengzhou 450002, PR China.. Electronic address:

Chickens are vital economic poultry and serve as exemplary models for avian research. The incomplete reference genome of chickens and the limited availability of full-length cDNA impede the identification of alternatively spliced transcripts, thereby delaying many fundamental chicken studies. We utilized PacBio Iso-seq technology on various chicken tissues, obtaining 170,162 full-length transcripts through comprehensive transcriptome sequencing and annotation.

View Article and Find Full Text PDF

Comparative study of transcriptomic alterations in sepsis-induced acute liver injury: Deciphering the role of alternative splicing in mouse models.

Int Immunopharmacol

December 2024

Department of Emergency, Kashi Prefecture Second People's Hospital, Uygur Autonomous Region Kashi, Xinjiang, 844000, China; Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China. Electronic address:

Background: Sepsis represents a critical health crisis often leading to the failure of multiple organs, with the liver playing a pivotal role in controlling inflammation and defending against systemic infections. The exacerbation of liver damage can escalate sepsis severity, underscoring the necessity to delve into the molecular mechanisms underlying sepsis-induced acute liver injury (ALI). The role of alternative splicing (AS), a complex post-transcriptional mechanism, has been occasionally noted in relation to sepsis across different investigations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!