Common wheat (Triticum aestivum) is one of the most widely cultivated and consumed crops globally. In the face of limited arable land and climate changes, it is a great challenge to maintain current and increase future wheat production. Enhancing agronomic traits in wheat by introducing mutations across all three homoeologous copies of each gene has proven to be a difficult task due to its large genome with high repetition. However, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) genome editing technologies offer a powerful means of precisely manipulating the genomes of crop species, thereby opening up new possibilities for biotechnology and breeding. In this review, we first focus on the development and optimization of the current CRISPR-based genome editing tools in wheat, emphasizing recent breakthroughs in precise and multiplex genome editing. We then describe the general procedure of wheat genome editing and highlight different methods to deliver the genome editing reagents into wheat cells. Furthermore, we summarize the recent applications and advancements of CRISPR/Cas technologies for wheat improvement. Lastly, we discuss the remaining challenges specific to wheat genome editing and its future prospects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jgg.2023.09.007 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Innovative Genomics Institute, University of California, Berkeley, CA 94720.
The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.
View Article and Find Full Text PDFGenetics
January 2025
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis.
View Article and Find Full Text PDFHLA
January 2025
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Medical University, Moscow, Russia.
The new HLA-C*12:02:55 allele showed one synonymous nucleotide difference compared to the HLA-С*12:02:02:01 allele in codon 134.
View Article and Find Full Text PDFHLA
January 2025
Federal State Budget Institution National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Moscow, Russia.
The new HLA-B*35:01:80 allele showed one synonymous nucleotide difference compared to the HLA-B*35:01:01:01 allele in codon 137.
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2025
Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
Introduction: Macromolecular X-ray crystallography (XRC), nuclear magnetic resonance (NMR), and cryo-electron microscopy (cryoEM) are the primary techniques for determining atomic-level, three-dimensional structures of macromolecules essential for drug discovery. With advancements in artificial intelligence (AI) and cryoEM, the Protein Data Bank (PDB) is solidifying its role as a key resource for 3D macromolecular structures. These developments underscore the growing need for enhanced quality metrics and robust validation standards for experimental structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!