A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microbial community dynamics and metagenomics reveal the potential role of unconventional functional microorganisms in nitrogen and phosphorus removal biofilm system. | LitMetric

Microbial community dynamics and metagenomics reveal the potential role of unconventional functional microorganisms in nitrogen and phosphorus removal biofilm system.

Sci Total Environ

Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China. Electronic address:

Published: December 2023

The conventional functional microorganisms for nitrogen and phosphorus removal, such as Nitrosomonas, Nitrobacter, Nitrospira and Candidatus Accumulibacter, were hotspots in past research. However, the role of diverse unconventional functional microorganisms was neglected. In this study, a biofilm system was developed to explore the potential role of unconventional functional microorganisms in nutrients removal. According to the results of microbial community dynamics and metagenomics, complete ammonia oxidizing (comammox) bacteria was 20 times more abundant than ammonia-oxidizing bacteria (AOB) at day 121 and its abundance of amoA gene was almost the same as AOB. Although Nitrospira dominated the nitrite-oxidizing bacteria (NOB), diverse unconventional nxrB-containing microorganisms, particularly Chloroflexi, also significantly contributed to the nitrite oxidation. Binning analysis showed that Myxococcota-affiliated Haliangium had the necessary genes owns by phosphorus-accumulating organisms (PAO) and was likely to be the primary PAO since its abundance (6.38 %) was much higher than other conventional PAO (0.70 %). Comparing metagenome-assembled genomes of comammox bacteria with AOB and ammonia-oxidizing archaea (AOA), it possessed potential metabolic versatility in hydrogen and phosphorus, which may be the primary reason for the positive effect of the alternating anaerobic and aerobic conditions on the enrichment of comammox bacteria. Collectively, our findings broaden the understanding on the microbial mechanism of nitrogen and phosphorus removal in biofilm system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167194DOI Listing

Publication Analysis

Top Keywords

functional microorganisms
16
unconventional functional
12
nitrogen phosphorus
12
phosphorus removal
12
biofilm system
12
comammox bacteria
12
microbial community
8
community dynamics
8
dynamics metagenomics
8
potential role
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!