Disinfectants and their mixtures can induce hormesis. However, how the mixture hormesis is related to those of components and the interactions in disinfectant mixtures remain unclear. In this paper, the luminescence inhibition toxicities of chlorinated sodium phosphate (CSP), dodecyl dimethyl benzyl ammonium bromide (DOB), dodecyl dimethyl benzyl ammonium chloride (DOC), ethanol (EtOH), glutaraldehyde (GLA), hydrogen peroxide (HO), isopropyl alcohol (IPA), n-propanol (NPA), and 20 mixture rays in four mixture systems (EtOH-HO, DOB-HO, DOC-EtOH, and EtOH-IPA-NPA) containing at least one component showing hormesis to Vibrio qinghaiensis sp.-Q67 (Q67) were determined at 0.25, 3, 6, 9, and 12 h. The synergism-antagonism heatmap based on independent action model (noted as SAHmap) was developed to systematically evaluate the interactions in various mixtures. It was shown that five disinfectants (CSP, EtOH, HO, NPA, and IPA) and 17 mixture rays exhibited time-dependent hormesis. The hormetic component was responsible for the hormesis of the mixture rays. Most mixture rays showed low- concentration/dose additive action and high-concentration/dose synergism at different time. This study further exemplified the interrelationship between the hormesis in the mixtures and their components and implied the need to pay attention to the time-dependent hormesis and interactions induced by the disinfectants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.167204 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!