In this study, Cu hybridization coupling oxygen defect engineering was adopted to synthesis of CuNiFe layered double oxides (CuNiFe-LDOs) in peroxymonosulfate (PMS) activation for degradation of methyl 4-hydroxybenzoate. The morphology and crystal structure of CuNiFe-LDOs was characterized in detail, which exhibited regular layered-structure at a Cu:Ni doping ratio of 1:1 and annealing temperature of 400 °C, and presented the crystal of CuO@FeO-NiO. Besides, the X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) results demonstrated that abundant oxygen vacancies (OVs) and low oxidation state Cu species were composed in CuNiFe-LDOs400. The CuNiFe-LDOs400/PMS system showed excellent catalytic performance toward the degradation of butyl 4-hydroxybenzoate (BuP), and resistant to the effect of pH value and background inorganic anions. Based on quenching experiments and EPR measurements, singlet oxygen (O) was identified as the dominant active species during the heterogeneous catalytic process, which was generated by the synergistic interaction between OVs-Cu(I) site and PMS. In this process, the electron-drawing property of OVs promoted the adsorption of PMS molecule on Cu(I) site, followed by the accumulation of electron and cleavage of O-O bond to generate intermediate oxygen radical species, which donated one electron to eventually generate singlet oxygen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.140253 | DOI Listing |
J Hazard Mater
January 2025
Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
Surface defect engineering has been regarded as an appealing strategy to improve photocatalytic performance, but defects are susceptible to inactivation and thus lose their function as active sites. In this study, we successfully tailored and identified the dynamic evolution of surface hydroxyl defects over ZnTi-layered double hydroxide (ZnTi-LDH) photocatalyst. The enrichment of surface hydroxyl electrons and the dynamic circulation of hydroxyl defects result in enhanced separation and transport capabilities of photogenerated carriers, thereby ensuring the perpetual activation of small molecules into •O and •OH.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
Electrocatalytic dehalogenative deuteration is a sustainable method for precise deuteration, whereas its Faradaic efficiency (FE) is limited by a high overpotential and severe D evolution reaction (DER). Here, Cu site-adjusted adsorption and crown ether-reconfigured interfacial DO are reported to cooperatively increase the FE of dehalogenative deuteration up to 84% at -100 mA cm. Cu sites strengthen the adsorption of aryl iodides, promoting interfacial mass transfer and thus accelerating the kinetics toward dehalogenative deuteration.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.
Seawater electrolysis has emerged as a promising approach for the generation of hydrogen energy, but the production of deleterious chlorine derivatives (e.g., chloride and hypochlorite) presents a significant challenge due to the severe corrosion at the anode.
View Article and Find Full Text PDFEur Phys J C Part Fields
January 2025
A measurement of the dijet production cross section is reported based on proton-proton collision data collected in 2016 at by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3 . Jets are reconstructed with the anti- algorithm for distance parameters of and 0.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Physics, BITS Pilani-Pilani Campus RJ-333031 India
The study reports solid-state ceramic supercapacitors (SSCs) assembled using a novel composite electrolyte based on Li ion conducting perovskite-type LLTO (LiLaTiO) and an ionic liquid (EMIM BF). Small amounts of various ionic liquids (ILs) were added to LLTO to enhance the ionic conductivity and improve electrode compatibility. The optimal composition with approximately ∼6 wt% EMIM BF in LLTO exhibited a high ionic conductivity of around ∼10 Ω cm at room temperature, nearly three orders of magnitude higher than that of the pristine LLTO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!