In this study, Cu hybridization coupling oxygen defect engineering was adopted to synthesis of CuNiFe layered double oxides (CuNiFe-LDOs) in peroxymonosulfate (PMS) activation for degradation of methyl 4-hydroxybenzoate. The morphology and crystal structure of CuNiFe-LDOs was characterized in detail, which exhibited regular layered-structure at a Cu:Ni doping ratio of 1:1 and annealing temperature of 400 °C, and presented the crystal of CuO@FeO-NiO. Besides, the X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) results demonstrated that abundant oxygen vacancies (OVs) and low oxidation state Cu species were composed in CuNiFe-LDOs400. The CuNiFe-LDOs400/PMS system showed excellent catalytic performance toward the degradation of butyl 4-hydroxybenzoate (BuP), and resistant to the effect of pH value and background inorganic anions. Based on quenching experiments and EPR measurements, singlet oxygen (O) was identified as the dominant active species during the heterogeneous catalytic process, which was generated by the synergistic interaction between OVs-Cu(I) site and PMS. In this process, the electron-drawing property of OVs promoted the adsorption of PMS molecule on Cu(I) site, followed by the accumulation of electron and cleavage of O-O bond to generate intermediate oxygen radical species, which donated one electron to eventually generate singlet oxygen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.140253DOI Listing

Publication Analysis

Top Keywords

layered double
8
double oxides
8
degradation butyl
8
butyl 4-hydroxybenzoate
8
singlet oxygen
8
oxygen
6
activation peroxymonosulfate
4
peroxymonosulfate cu-ni-fe
4
cu-ni-fe layered
4
oxides degradation
4

Similar Publications

Deep photocatalytic NO oxidation on ZnTi-LDH: Pivotal role of surface hydroxyls dynamic evolution.

J Hazard Mater

January 2025

Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.

Surface defect engineering has been regarded as an appealing strategy to improve photocatalytic performance, but defects are susceptible to inactivation and thus lose their function as active sites. In this study, we successfully tailored and identified the dynamic evolution of surface hydroxyl defects over ZnTi-layered double hydroxide (ZnTi-LDH) photocatalyst. The enrichment of surface hydroxyl electrons and the dynamic circulation of hydroxyl defects result in enhanced separation and transport capabilities of photogenerated carriers, thereby ensuring the perpetual activation of small molecules into •O and •OH.

View Article and Find Full Text PDF

Electrocatalytic dehalogenative deuteration is a sustainable method for precise deuteration, whereas its Faradaic efficiency (FE) is limited by a high overpotential and severe D evolution reaction (DER). Here, Cu site-adjusted adsorption and crown ether-reconfigured interfacial DO are reported to cooperatively increase the FE of dehalogenative deuteration up to 84% at -100 mA cm. Cu sites strengthen the adsorption of aryl iodides, promoting interfacial mass transfer and thus accelerating the kinetics toward dehalogenative deuteration.

View Article and Find Full Text PDF

Transition Metal-Coordinated Polymer Achieves Stable Seawater Oxidation over NiFe Layered Double Hydroxide.

Inorg Chem

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.

Seawater electrolysis has emerged as a promising approach for the generation of hydrogen energy, but the production of deleterious chlorine derivatives (e.g., chloride and hypochlorite) presents a significant challenge due to the severe corrosion at the anode.

View Article and Find Full Text PDF

A measurement of the dijet production cross section is reported based on proton-proton collision data collected in 2016 at by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3 . Jets are reconstructed with the anti- algorithm for distance parameters of and 0.

View Article and Find Full Text PDF

The study reports solid-state ceramic supercapacitors (SSCs) assembled using a novel composite electrolyte based on Li ion conducting perovskite-type LLTO (LiLaTiO) and an ionic liquid (EMIM BF). Small amounts of various ionic liquids (ILs) were added to LLTO to enhance the ionic conductivity and improve electrode compatibility. The optimal composition with approximately ∼6 wt% EMIM BF in LLTO exhibited a high ionic conductivity of around ∼10 Ω cm at room temperature, nearly three orders of magnitude higher than that of the pristine LLTO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!