The behavior of amphiphilic molecules such as lipids, peptides and their mixtures at the air/water interface allow us to evaluate and visualize the arrangement formed in a confined and controlled surface area. We have studied the surface properties of the zwitterionic DPPC lipid and Aβ(1-40) amyloid peptide in mixed films at different temperatures (from 15 to 40 °C). In this range of temperature the surface properties of pure Aβ(1-40) peptide remained unchanged, whereas DPPC undergoes its characteristic liquid-expanded → liquid-condensed bidimensional phase transition that depends on the temperature and lateral pressure. This particular property of DPPC makes it possible to dynamically study the influence of the lipid phase state on amyloid structure formation at the interface in a continuous, isothermal and abrupt change on the environmental condition. As the mixed film is compressed the fibril-like structure of Aβ(1-40) is triggered specifically in the liquid-expanded region, independently of temperature, and it is selectively excluded from the well-visible liquid condensed domains of DPPC. The Aβ amyloid fibers were visualized by using BAM and AFM and they were Thio T positive. In mixed DPPC/Aβ(1-40) films the condensed domains (in between 11 mN/m to 20 mN/m) become irregular probably due to the fibril-like structures is imposing additional lateral stress sequestering lipid molecules in the surrounding liquid-expanded phase to self-organize into amyloids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2023.184234 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!