For the first time, molecular dynamics (MD) simulation was used to examine melittin's adsorption and encapsulation on covalently functionalized carbon nanotubes (fCNTs). The CNT wall and terminals were functionalized with carboxy, hydroxyl, and amine functional groups. The findings demonstrated that the melittin would be adsorbed on the fCNT's outer surface when just the CNT terminal is functionalized. On the other hand, melittin is encapsulated inside the nanotube space when the CNTs' walls and terminals are functionalized. Encapsulated melittin has an alpha-helix structure similar to melittin in a water medium. With the use of parameters like root mean square fluctuations (RMSF) and radius of gyration (Rg), the melittin conformational changes were evaluated. According to the findings, the amine functional group significantly alters the melittin's conformation. The wall and terminals fCNTs with hydroxyl and carboxyl could encapsulate melittin inside them with a stable structure. This result will be useful for the design of peptide carriers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107393DOI Listing

Publication Analysis

Top Keywords

adsorption encapsulation
8
covalently functionalized
8
functionalized carbon
8
carbon nanotubes
8
molecular dynamics
8
dynamics simulation
8
wall terminals
8
terminals functionalized
8
amine functional
8
melittin
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!