Coexisting Fe single atoms and nanoparticles on hierarchically porous carbon for high-efficiency oxygen reduction reaction and Zn-air batteries.

J Colloid Interface Sci

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. Electronic address:

Published: January 2024

Fe single-atom catalysts still suffer from unsatisfactory intrinsic activity and durability for oxygen reduction reaction (ORR). Herein, the coexisting Fe single atoms and nanoparticles on hierarchically porous carbon (denoted as Fe-FeN-C) are prepared via a Zn(OH)(CO)-assisted pyrolysis strategy. Theoretical calculation reveals that the Fe nanoparticles can optimize the electronic structures and d-band center of Fe active center, hence reducing the reaction energy barrier for enhancing intrinsic activity. The Zn(OH)(CO) self-sacrificial template not only can promote the formation of Fe single atoms, but also contributes to the construction of microporous/mesoporous/macroporous structures. Therefore, the obtained Fe-FeN-C exhibits impressive ORR activity with a half-wave potential of 0.921 V, which far exceeds Pt/C. With Fe-FeN-C as the cathode catalyst, the assembled Zn-air batteries delivered a maximum power density of 206 mW cm and a long-cycle life over 400 h.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.09.047DOI Listing

Publication Analysis

Top Keywords

single atoms
12
coexisting single
8
atoms nanoparticles
8
nanoparticles hierarchically
8
hierarchically porous
8
porous carbon
8
oxygen reduction
8
reduction reaction
8
zn-air batteries
8
intrinsic activity
8

Similar Publications

Mechanistic insights into carbonate radical-driven reactions: Selectivity and the hydrogen atom abstraction route.

J Hazard Mater

December 2024

Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.

Carbonate radical (CO) is inevitably produced in advanced oxidation processes (AOPs) when addressing real-world aqueous environments, yet it often goes unnoticed due to its relatively lower reactivity. In this study, we emphasized the pivotal role of CO in targeting the elimination of contaminants by contrasting it with conventional reactive oxygen species (ROSs) and assessing the removal of sulfamethazine (SMT). Similar to singlet oxygen (O), CO shows a preference for electron-rich organic compounds.

View Article and Find Full Text PDF

Vanadium single-atoms coordinated artificial peroxidases as biocatalyst-linked immunosorbent assay for highly-sensitive carcinoembryonic antigen immunoassay.

Biomaterials

December 2024

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China; Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. Electronic address:

In medical and biomedical fields, enzyme-mimetic nanomaterials have garnered significant interest as efficacious signal enhancers for biocatalyst-linked immunosorbent assays (BLISA). Despite the burgeoning enthusiasm, engineering artificial biocatalysts that exhibit both exceptional catalytic proficiency and pronounced colorimetric signal output remains a formidable challenge. Inspired by the heme structures and biocatalytic activities of horseradish peroxidase, we introduce the synthesis of vanadium single-atoms (SAV) coordinated artificial peroxidases as BLISA for highly sensitive and selective carcinoembryonic antigen (CEA) immunoassay.

View Article and Find Full Text PDF

Correlation between ligand-mediated silver species on TiO nanosheet with the photocatalytic hydrogen evolution activities.

J Colloid Interface Sci

December 2024

School of Materials Science & Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, China. Electronic address:

Metal oxide photocatalysts loaded with metal species are extremely important in photocatalysis. The physicochemical states of metal species, as well as the interaction between metal species and support, determine the transfer of charge carriers between the heterointerface, which has a significant impact on photocatalytic activity. Here, we prepared anatase TiO nanosheets (TIO) modified with different Ag species, including single atoms, clusters, and nanoparticles, using a ligand-mediated method.

View Article and Find Full Text PDF

Simultaneous modulation of Ni single atoms and NiO clusters on TiO for solar-driven CO and HO conversion to CH.

J Colloid Interface Sci

December 2024

School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China. Electronic address:

Construction of the photocatalysts with synergistic active sites holds great significance in enhancing the direct CO reduction coupled with HO oxidation under solar irradiation. This work demonstrates the fabrication of a dual-active-site catalyst (Ni-NiO/TiO) through in-situ formation and simultaneous modulation of Ni single atoms (Ni) and NiO clusters on porous TiO. Both Ni and NiO are characterized by X-ray absorption fine structure (XAFS) analyses and diffuse reflectance infrared Fourier transform spectroscopy using CO as a probe molecule (CO-DRIFTS).

View Article and Find Full Text PDF

Context: This study employs molecular dynamics simulations to investigate the nanoscale tribological behavior of a single transverse grain boundary in a nickel-based polycrystalline alloy. A series of simulations were conducted using a repetitive rotational friction method to explore the mechanisms by which different grain boundary positions influence variations in wear depth, friction force, friction coefficient, dislocation, stress, and internal damage during repeated friction processes. The results reveal that the grain boundary structure enhances the strength of the nanoscale nickel-based polycrystalline alloy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!