"You've got the Body I've got the Brains" - Could the current AI-based tools replace the human ingenuity for designing new drug candidates?

Bioorg Med Chem

Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970 Alagoas, Maceió, Brazil.

Published: October 2023

The emergence of artificial intelligence (AI) tools has transformed the landscape of drug discovery, providing unprecedented speed, efficiency, and cost-effectiveness in the search for new therapeutics. From target identification to drug formulation and delivery, AI-driven algorithms have revolutionized various aspects of medicinal chemistry, significantly accelerating the drug design process. Despite the transformative power of AI, this perspective article emphasizes the limitations of AI tools in drug discovery, requiring inventive skills of medicinal chemists. However, the article highlighted that there is a need for a harmonious integration of AI-based tools and human expertise in drug discovery. Such a synergistic approach promises to lead to groundbreaking therapies that address unmet medical needs and benefit humankind. As the world evolves technologically, the question remains: When will AI tools effectively design and develop drugs? The answer may lie in the seamless collaboration between AI and human researchers, unlocking transformative therapies that combat diseases effectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2023.117475DOI Listing

Publication Analysis

Top Keywords

drug discovery
12
ai-based tools
8
drug
6
tools
5
"you've body
4
body brains"
4
brains" current
4
current ai-based
4
tools replace
4
replace human
4

Similar Publications

Signaling pathway regulators in preimplantation embryos.

J Mol Histol

December 2024

Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran.

Embryonic development during the preimplantation stages is highly sensitive and critically dependent on the reception of signaling cues. The precise coordination of diverse pathways and signaling factors is essential for successful embryonic progression. Even minor disruptions in these factors can result in physiological dysfunction, fetal malformations, or embryonic arrest.

View Article and Find Full Text PDF

Development and Discovery of a Selective Degrader of Casein Kinases 1 δ/ε.

J Med Chem

December 2024

Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.

Members of the casein kinase 1 (CK1) family have emerged as key regulators of cellular signaling and as potential drug targets. Functional annotation of the 7 human isoforms would benefit from isoform-selective inhibitors, allowing studies on the role of these enzymes in normal physiology and disease pathogenesis. However, due to significant sequence homology within the catalytic domain, isoform selectivity is difficult to achieve with conventional small molecules.

View Article and Find Full Text PDF

The sodium-dependent membrane transporter SLC6A15 (BAT2) belongs to the SLC6 family, which comprises carriers of amino acids and monoamines. BAT2 is expressed in the central nervous system (CNS), including the glutaminergic and GABAergic system. SLC6A15 supplies neurons with neutral amino acids.

View Article and Find Full Text PDF

Identifying target proteins for bioactive molecules is essential for understanding their mechanisms, developing improved derivatives, and minimizing off-target effects. Despite advances in target identification (target-ID) technologies, significant challenges remain, impeding drug development. Most target-ID methods use cell lysates, but maintaining an intact cellular context is vital for capturing specific drug-protein interactions, such as those with transient protein complexes and membrane-associated proteins.

View Article and Find Full Text PDF

Background: Interleaflet haemorrhage (IH) plays a well-recognized detrimental role in calcified aortic valve disease (CAVD). However, IH-induced fibro-osteogenic responses in valvular interstitial cells (VICs) appear to be triggered under specific pathological conditions. Iron deficiency (ID), a common co-morbidity in CAVD, may influence these responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!