Abnormal glucose metabolism and hemodynamic changes in the brain are closely related to cognitive function, providing complementary information from distinct biochemical and physiological processes. However, it remains unclear how to effectively integrate these two modalities across distinct brain regions. In this study, we developed a connectome-based sparse coupling method for hybrid PET/MRI imaging, which could effectively extract imaging markers of Alzheimer's disease (AD) in the early stage. The FDG-PET and resting-state fMRI data of 56 healthy controls (HC), 54 subjective cognitive decline (SCD), and 27 cognitive impairment (CI) participants due to AD were obtained from SILCODE project (NCT03370744). For each participant, the metabolic connectome (MC) was constructed by Kullback-Leibler divergence similarity estimation, and the functional connectome (FC) was constructed by Pearson correlation. Subsequently, we measured the coupling strength between MC and FC at various sparse levels, assessed its stability, and explored the abnormal coupling strength along the AD continuum. Results showed that the sparse MC-FC coupling index was stable in each brain network and consistent across subjects. It was more normally distributed than other traditional indexes and captured more SCD-related brain areas, especially in the limbic and default mode networks. Compared to other traditional indices, this index demonstrated best classification performance. The AUC values reached 0.748 (SCD/HC) and 0.992 (CI/HC). Notably, we found a significant correlation between abnormal coupling strength and neuropsychological scales (p < .05). This study provides a clinically relevant tool for hybrid PET/MRI imaging, allowing for exploring imaging markers in early stage of AD and better understanding the pathophysiology along the AD continuum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619407PMC
http://dx.doi.org/10.1002/hbm.26493DOI Listing

Publication Analysis

Top Keywords

coupling strength
12
sparse coupling
8
coupling method
8
imaging markers
8
markers alzheimer's
8
alzheimer's disease
8
connectome constructed
8
abnormal coupling
8
coupling
6
metabolism-functional connectome
4

Similar Publications

The interfacial mechanical characteristics of sandwich structures are crucial in defining the comprehensive mechanical performance of the whole structure. Nevertheless, in practical applications, the interface often emerges as the weakest segment due to potential defects in the interface of porous metal sandwich plates (PMSP). This study aims to explore the regulatory mechanisms influencing the mechanical characteristics of nano-SiO-reinforced aluminum foam sandwich structure (AFS) interfaces and to propose an effective strategy to achieve AFS interfaces with superior and stable mechanical properties.

View Article and Find Full Text PDF

Current nursing shortages, particularly in complex practice or specialty areas, coupled with high attrition rates of both seasoned and new graduate nurses, have required nursing leaders to consider creative approaches to recruit, prepare and retain nurses in specialty areas. This article describes a collaborative partnership between post-secondary institutions and health authorities in one province to address the need to prepare and retain nurses in high-priority specialized areas, such as the intensive care unit or the emergency department. This partnership allows for a proactive connection that leverages the strengths and resources of both healthcare and educational institutions.

View Article and Find Full Text PDF

The shift fork shaft is a key component in transmissions, connecting the shift fork in order to adjust the gear engagement. This study investigates the effects of different welding sequences on deformation and residual stress during plasma welding of the shift fork shaft. A temperature-displacement coupled finite element method, using ABAQUS simulation software and a double ellipsoid heat source model, was employed for the numerical analysis.

View Article and Find Full Text PDF

The present work was undertaken to explore the multiple alloys and process steps that have been suggested to mitigate the harmful effects of high iron content in cast Al-Si alloys. The base alloy used was ommercial 413.0 alloy containing 0.

View Article and Find Full Text PDF

This study introduces a sustainable approach for enhancing the fire retardancy and smoke suppression of poly(lactic acid) (PLA) composites, contributing to addressing one of the major challenges in biocomposites that limits their application in various engineering fields, as automotive and construction sectors. Flax fibers (FF) were surface functionalized with a novel organic-inorganic hybrid flame retardant (FR), offering a sustainable bioinspired approach that mitigates potential mechanical properties impairment and FR leaching, which can cause environmental concerns and reduced composite durability. The process involves a three-step coating procedure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!