AI Article Synopsis

  • The Hedgehog (Hh) family is crucial for embryonic development, immune cell differentiation, and tissue regeneration, playing a key role in both the thymus for T cell development and hematopoietic stem cell maintenance.
  • Hh signaling has distinct effects on immune responses, enhancing certain immune cells while regulating homeostasis, indicating its complex role in both immune function and inflammation.
  • The review suggests that targeting Hh signaling could offer new strategies for treating tumors and autoimmune diseases, highlighting its importance in both development and disease management.

Article Abstract

The Hedgehog (Hh) family is a prototypical morphogen involved in embryonic patterning, multi-lineage differentiation, self-renewal, morphogenesis, and regeneration. There are studies that have demonstrated that the Hh signaling pathway differentiates developing T cells into MHC-restricted self-antigen tolerant T cells in a concentration-dependent manner in the thymus. Whereas Hh signaling pathway is not required in the differentiation of B cells but is indispensable in maintaining the regeneration of hematopoietic stem cells (HSCs) and the viability of germinal centers (GCs) B cells. The Hh signaling pathway exerts both positive and negative effects on immune responses, which involves activating human peripheral CD4 T cells, regulating the accumulation of natural killer T (NKT) cells, recruiting and activating macrophages, increasing CD4Foxp3 regulatory T cells in the inflammation sites to sustain homeostasis. Hedgehog signaling is involved in the patterning of the embryo, as well as homeostasis of adult tissues. Therefore, this review aims to highlight evidence for Hh signaling in the differentiation, function of immune cells and autoimmune disease. Targeting Hh signaling promises to be a novel, alternative or adjunct approach to treating tumors and autoimmune diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08916934.2023.2259127DOI Listing

Publication Analysis

Top Keywords

signaling pathway
16
cells
9
hedgehog signaling
8
autoimmune diseases
8
signaling
7
emerging role
4
role hedgehog
4
pathway
4
pathway immunity
4
immunity response
4

Similar Publications

p62 Binding to Protein Kinase C Regulates HIV-1 gp120 V3 Loop Induced Microglial Inflammation.

Inflammation

December 2024

Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China.

The main pathogenic mechanism of HIV-associated neurocognitive disorders (HAND) is neuronal apoptosis induced by inflammatory mediators, in which microglial inflammation plays a crucial role. However, the exact pathogenic mechanism remains unclear. Previous studies have shown that the HIV-1 gp120 V3 loop can trigger inflammation in CHME-5 microglia.

View Article and Find Full Text PDF

Chimeric Peptide-Engineered Polyprodrug Enhances Cytotoxic T Cell Response by Inducing Immunogenic Cell Death and Upregulating Major Histocompatibility Complex Class I.

ACS Nano

December 2024

The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.

Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.

View Article and Find Full Text PDF

Amino acid metabolism provides significant insight into the development and prevention of many viral diseases. Therefore, the present study aimed to compare the amino acid profiles of hand, foot, and mouth disease (HFMD) patients with those of healthy individuals and to further reveal the molecular mechanisms of HFMD severity. Using UPLC-MS/MS, we determined the plasma amino acid expression profiles of pediatric patients with HFMD (mild,  = 42; severe, = 43) and healthy controls ( = 25).

View Article and Find Full Text PDF

Integrating UPLC-MS/MS Bioinformatics and In Vivo Experiments Validation to Elucidate the Mechanism of Wenzi Jiedu Decoction in Suppressing Colorectal Cancer.

Phytochem Anal

December 2024

Institute of Oncology, the First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.

Objectives: We used ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), bioinformatics, and in vivo experiments to study the anti-colorectal cancer (CRC) effects of Wenzi Jiedu Decoction (WJD).

Methods: Detected the main components of WJD by UPLC-MS/MS. Obtained WJD targets and CRC targets through the open source database.

View Article and Find Full Text PDF

Isoniazid and rifampicin co-therapy are the main causes of anti-tuberculosis drug-induced liver injury (ATB-DILI) and acute liver failure, seriously threatening human health. However, its pathophysiology is not fully elucidated. Growing evidences have shown that fibroblast growth factors (FGFs) play a critical role in diverse aspects of liver pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!