A new species of powdery mildew fungus Erysiphe ahmadii and a new record, Erysiphe populicola, on Salicaceae are described from Pakistan. In addition to light microscopy, scanning electron microscopy is also done to clearly demonstrate the surface characters of chasmothecia. E. ahmadii sp. nov. is characterized by large conidia ((-26)29-35(-37) × (-16)17-21(-23) μm), long chasmothecial appendages (198-286 μm) and small conidiophores. The novelty is confirmed by analyzing the genetic variation of internal transcribed spacer region (ITS1-5.8S-ITS2) of the ribosomal DNA gene, a universal fungal marker. E. populicola is characterized for the first time using molecular phylogenetic markers. Detailed descriptions along with scanning electron microscopy (SEM) photographs are provided in this paper. RESEARCH HIGHLIGHTS: Powdery mildews are obligate biotrophic pathogens of plants. Erysiphe ahmadii, a new powdery mildew fungus on willow trees, is described. First reference sequence of Erysiphe populicola is also generated. Both taxa are discussed in detail using macro- and micro-morphological and DNA barcoding techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.24402DOI Listing

Publication Analysis

Top Keywords

scanning electron
12
electron microscopy
12
erysiphe ahmadii
12
erysiphe populicola
12
dna barcoding
8
ahmadii nov
8
record erysiphe
8
powdery mildew
8
mildew fungus
8
erysiphe
6

Similar Publications

In this study, polyethylene glycol (PEG) and dextran (Dex) were chemically modified to obtain amino-functionalized PEG (PEG-(NH)) and oxidized dextran (ODex). They were subsequently reacted via -NH and -CHO groups to synthesize a macromolecular Schiff base particle. The structures, morphologies, and thermal properties of the macromolecular Schiff base particle were characterized using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermogravimetry analysis (TGA).

View Article and Find Full Text PDF

Chia Derived Peptides Affecting Bacterial Membrane and DNA: Insights from Staphylococcus aureus and Escherichia coli Studies.

Plant Foods Hum Nutr

December 2024

Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, Mérida, 97203, Yucatán, México.

The increasing concern over microbial resistance to conventional antimicrobial agents used in food preservation has led to growing interest in plant-derived antimicrobial peptides (AMPs) as alternative solutions. In this study, the antimicrobial mechanisms of chia seed-derived peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were investigated against Staphylococcus aureus (SA) and Escherichia coli (EC). Fluorometric assays and scanning electron microscopy (SEM) demonstrated that the peptides disrupt bacterial membranes, with propidium iodide (PI) uptake reaching 72.

View Article and Find Full Text PDF

Very high heat is generated during the polymerization of poly (methyl methacrylate) (PMMA) bone cement, which is used for implant fixation in orthopedic surgery. As such, it has been suggested that irrigating the bone cement layer in the surgical site with a saline solution is a way of cooling the layer. In this study, we aimed to determine the influence of irrigation with a saline solution on the flexural strength and the microstructure of the test specimens of two PMMA bone cement brands: Simplex P and FIX 1.

View Article and Find Full Text PDF

In the course of pipe jacking construction, the carrying-soil effect frequently arises, influenced by factors such as excavation unloading, ongoing disturbance from successive pipe sections, and the progressive accumulation of soil adhesion. The pipe jacking slurry serves as a critical agent for friction reduction and strata support, essential for the secure advancement of the construction process. This study introduces the Microbial-Induced Calcium Carbonate Precipitation (MICP) technology into the realm of pipe jacking slurry, aiming to enhance its friction-reduction capabilities and the stability of the soil enveloping the pipe.

View Article and Find Full Text PDF

The effects of 5.8-GHz microwave (MW) irradiation on the synthesis of mesoporous selenium nanoparticles (mSeNPs) in aqueous medium by reduction of selenite ions with ascorbic acid, using zinc nanoparticles as a hard template and cetyltrimethylammonium bromide (CTAB) as a micellar template, are examined for the first time with a particular emphasis on MW-particle interactions and the NPs morphology. This MW-assisted synthesis is compared to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!