Rapid urbanization, population growth, agricultural practices, and industrial activities have led to widespread groundwater contamination. This study evaluated heavy metal contamination in residential drinking water in Shiraz, Iran (2021). The analysis involved 80 groundwater samples collected across wet and dry seasons. Water quality was comprehensively assessed using several indices, including the heavy metals evaluation index (HEI), heavy metal pollution index (HPI), contamination degree (CD), and metal index (MI). Carcinogenic and non-carcinogenic risk assessments were conducted using deterministic and probabilistic approaches for exposed populations. In the non-carcinogenic risk assessment, the chronic daily intake (CDI), hazard quotient (HQ), and hazard index (HI) are employed. The precision of risk assessment was bolstered through the utilization of Monte Carlo simulation, executed using the R software platform. Based on the results, in both wet and dry seasons, Zinc (Zn) consistently demonstrates the highest mean concentration, followed by Manganese (Mn) and Chromium (Cr). During the wet and dry seasons, 25% and 40% of the regions exhibited high CD, respectively. According to non-carcinogenic risk assessment, Cr presents the highest CDI and HQ in children and adults, followed by Mn, As and HI values, indicating elevated risk for children. The highest carcinogenic risk was for Cr in adults, while the lowest was for Cd in children. The sensitivity analysis found that heavy metal concentration and ingestion rate significantly impact both carcinogenic and non-carcinogenic risks. These findings provide critical insights for shaping policy and allocating resources towards effectively managing heavy metal contamination in residential drinking water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517167PMC
http://dx.doi.org/10.1038/s41598-023-43161-3DOI Listing

Publication Analysis

Top Keywords

heavy metal
20
wet dry
12
dry seasons
12
non-carcinogenic risk
12
risk assessment
12
analysis heavy
8
metal pollution
8
water quality
8
monte carlo
8
carlo simulation
8

Similar Publications

Background: Environmental metal exposure has been implicated in the development of digestive tract cancers, although the specific associations remain poorly defined. This study aimed to investigate the relationship between blood metal levels and the risk of digestive tract cancers among U.S.

View Article and Find Full Text PDF

Obesity and iron deficiency (ID) are widespread health issues, with subclinical inflammation in obesity potentially contributing to ID through unclear mechanisms. The aim of the present work was to elucidate how obesity-associated inflammation disturb iron metabolism and to investigate the effect of intravenous (IV) iron supplementation on absolute iron deficient pre-obese (BMI 25.0-29.

View Article and Find Full Text PDF

A simple, fast, and cost-effective colorimetric nitrite (NO) sensor based on ZIF-67-derived CoO nanocomposite (ZCo-2 NC) structure has been developed. The prepared colorimetric sensor (ZCo-2 NC) was employed to sensitively detect NO in drinking water system by the exhibition of promising peroxidase-mimicking nanozyme-like features. The sensor manifest well-determined sensing response with excellent linear and wide range of NO sensitivity (0.

View Article and Find Full Text PDF

Synergistic transformation of Cr(VI) in lubricant degradation by bacterial consortium.

World J Microbiol Biotechnol

January 2025

Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry Education, Chongqing Technology and Business University, Chongqing, 400067, China.

In recent years, it has become widely acknowledged that heavy metals are often present in oil-contaminated sites. This study utilized three specific types of microorganisms with different functions to construct a composite bacterial consortium for treating lubricant-Cr(VI) composite pollutants. The selected strains were Lysinbacillus fusiformis and Bacillus tropicus.

View Article and Find Full Text PDF

Background: As research progresses, there is a growing body of evidence indicating that urinary metallothionein (MT) levels may be elevated in individuals exposed to cadmium (Cd). This study aimed to investigate the potential association between urinary MT levels and causes of mortality among residents of the Kakehashi River Basin who have been exposed to Cd.

Method: The study involved a total of 1,398 men and 1,731 women were conducted between 1981 and 1982, with follow-up until November 2016.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!