The ischial origin of the hamstring musculature is complex. While the conjoint tendon and semimembranosus are commonly discussed and understood by radiologists, there is a lesser-known origin of the semitendinosus along the inferior and medial surface of the ischium in the form of a broad direct muscular connection. This secondary origin is infrequently described in the radiology literature and is a potential pitfall during grading of semitendinosus injuries if the interpreting physician is unaware of its presence. In a proximal hamstring tendon tear, the direct muscular origin of the semitendinosus can be spared, torn along with the conjoint tendon, or remain intact and contribute to a vertical shearing injury of the semitendinosus myotendinous junction. Detailed knowledge of this anatomy and its imaging appearance in the setting of injury enables the reader to correctly diagnose these unique hamstring injuries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00256-023-04455-9 | DOI Listing |
Am J Pathol
January 2025
Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-1606; Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095. Electronic address:
Duchenne muscular dystrophy (DMD) is a lethal, muscle-wasting, genetic disease that is greatly amplified by an immune response to the diseased muscles. The mdx mouse model of DMD was used to test whether the pathology can be reduced by treatments with a CTLA4-Ig fusion protein that blocks costimulatory signals required for activation of T-cells. CTLA4-Ig treatments reduced mdx sarcolemma lesions and reduced the numbers of activated T-cells, macrophages and antigen presenting cells in mdx muscle and reduced macrophage invasion into muscle fibers.
View Article and Find Full Text PDFSpine Deform
January 2025
Department of Orthopaedic Surgery, Scottish Rite Hospital for Children, Dallas, TX, USA.
Purpose: The etiology of early-onset scoliosis (EOS) has been shown to significantly influence baseline parent-reported health-related quality of life (HrQOL). In combining these etiology groups, we obligatorily lump together many disparate diagnoses, particularly true in the neuromuscular (NM) cohort. We sought to evaluate the influence of underlying neuromuscular diagnosis on the HrQOL at 5 years following surgery for EOS.
View Article and Find Full Text PDFBMC Sports Sci Med Rehabil
January 2025
Universite Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité - UR 7424, UFRSTAPS, Villeurbanne, France.
Background: The Closed Kinetic Chain Upper Extremity Stability Test (CKCUEST) is a physical performance test designed to assess the upper extremity (UE) stability. However, only one outcome measure is provided for both UEs, limiting its application if the UEs are not similarly involved. Moreover, the changes in loads sustained by the support UE throughout the movement may influence the support UE stability.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.
Inefficient targeting of muscle stem cells (MuSCs), also called satellite cells, represents a major bottleneck of current therapeutic strategies for muscular dystrophies, as it precludes the possibility of promoting compensatory regeneration. Here we describe a muscle-targeting delivery platform, based on gold nanoparticles, that enables the release of therapeutic oligonucleotides into MuSCs. We demonstrate that AuNPs conjugation to an aptamer against α7/β1 integrin dimers directs either local or systemic delivery of microRNA-206 to MuSCs, thereby promoting muscle regeneration and improving muscle functionality, in a mouse model of Duchenne Muscular Dystrophy.
View Article and Find Full Text PDFTrends Mol Med
January 2025
MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford, OX3 9DU, UK; Neuromuscular Centre, Division of Paediatrics, University Hospital of Liège and University of Liège, 4000, Liège, Belgium. Electronic address:
Spinal muscular atrophy (SMA) is a devastating, degenerative, paediatric neuromuscular disease which until recently was untreatable. Discovery of the responsible gene 30 years ago heralded a new age of pioneering therapeutic developments. Three disease-modifying therapies (DMTs) have received regulatory approval and have transformed the disease, reducing disability and prolonging patient survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!