AI Article Synopsis

  • * Data from 38 EC patients (12 with MSI and 26 with stable microsatellites) were retrospectively examined using 1.5T MRI, measuring parameters such as mean kurtosis, diffusivity, and fractional anisotropy.
  • * The results indicated that certain DKI parameters (like MK and Ka) differ significantly between MSI and MSS groups, showing potential in predicting MSI status, with high specificity but moderate sensitivity, which could aid in improving treatment strategies for patients.

Article Abstract

Purpose: To explore the value of Diffusion kurtosis imaging (DKI) with multiple quantitative parameters in predicting microsatellite instability (MSI) status in endometrial carcinoma (EC).

Methods: Data of 38 patients with EC were retrospectively analyzed, including 12 MSI and 26 microsatellite stability (MSS). All patients underwent preoperative 1.5T MR examination. The quantitative values of the DKI sequence in the tumor parenchyma of the two groups, including mean kurtosis (MK), axial kurtosis (Ka), radial kurtosis (Kr), fractional anisotropy (FA), fractional anisotropy of kurtosis (FAk), mean diffusivity (MD), axial diffusivity (Da), and radial diffusivity (Dr) were measured by two observers, respectively.

Results: The MK, Ka, Kr, FA, FAk, MD, Da, and Dr values of the MSI group were 1.074 ± 0.162, 1.253 ± 0.229, 0.886 ± 0.205, 0.207 ± 0.041, 0.397 ± 0.129, 0.890 ± 0.158 μm/ms, 1.083 ± 0.218 μm/ms, and 0.793 ± 0.133 μm/ms, and 0.956 (0.889,1.002), 1.048 ± 0.211, 0.831 ± 0.099, 0.188 ± 0.061, 0.334 (0.241,0.410), 1.043 ± 0.217 μm/ms, 1.235 ± 0.229 μm/ms, and 0.946 ± 0.215 μm/ms in the MSS group. The MK and Ka values of the MSI group were higher than those of the MSS group (P<0.05), while the MD and Dr values were lower than those of the MSS group (P<0.05). The AUC of MK, Ka, MD, and Dr values in predicting MSI status of EC was 0.763, 0.729, 0.731, 0.748, respectively. The sensitivity was 58.3%, 50.0%, 65.4%, 61.5%, and the specificity was 96.2%, 92.3%, 75.0%, 83.3%, respectively.

Conclusion: DKI can provide multiple quantitative parameters for predicting the MSI status of EC, and assist gynecologist to optimize the treatment plan for the patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00261-023-04041-6DOI Listing

Publication Analysis

Top Keywords

diffusion kurtosis
8
kurtosis imaging
8
multiple quantitative
8
quantitative parameters
8
parameters predicting
8
predicting microsatellite
8
microsatellite instability
8
status endometrial
8
endometrial carcinoma
8
fractional anisotropy
8

Similar Publications

The article describes a technique for digital holographic reconstruction of complex amplitude fields in diffuse blood facies using laser polarization-interference phase scanning to isolate a single scattered component of the object field. This method serves as the basis for developing algorithms for Mueller-matrix reconstruction of linear and circular birefringence parameters in the polycrystalline architectonics of blood facies. Statistical (central moments of the 1st-4th orders) and multifractal analyses (fractal dimension spectra) are applied to study the optical anisotropy maps of polycrystalline networks during blood dehydration.

View Article and Find Full Text PDF

Following recent advances in post-thrombectomy stroke care, the role of neuroinflammation and neuroprotective strategies in mitigating secondary injury has gained prominence. Yet, while neuroprotection and anti-inflammatory agents have re-emerged in clinical trials, their success has been limited. The neuroinflammatory response in cerebral ischemia is robust and multifactorial, complicating therapeutic approaches targeting single pathways.

View Article and Find Full Text PDF

Background: Adult glioblastomas (GBMs) are associated with high recurrence and mortality. Personalized treatment based on molecular markers may help improve the prognosis. We aimed to evaluate whether apparent diffusion coefficient (ADC) histogram analysis can better predict MGMT and TERT molecular characteristics and to determine the prognostic relevance of genetic profile in patients with GBM.

View Article and Find Full Text PDF

Bi-exponential diffusion-weighted imaging for differentiating high-grade gliomas from solitary brain metastases: a VOI-based histogram analysis.

Sci Rep

December 2024

The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030012, Shanxi, People's Republic of China.

This study investigated the use of bi-exponential diffusion-weighted imaging (DWI) combined with structural features to differentiate high-grade glioma (HGG) from solitary brain metastasis (SBM). A total of 57 patients (31 HGG, 26 SBM) who underwent pre-surgical multi-b DWI and structural MRI (T1W, T2W, T1W + C) were included. Volumes of interest (VOI) in the peritumoral edema area (PTEA) and enhanced tumor area (ETA) were selected for analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!