The ring-shaped cohesin complex is a key player in sister chromatid cohesion, DNA repair, and gene transcription. The loading of cohesin to chromosomes requires the loader Scc2 and is regulated by ATP. This process is hindered by Smc3 acetylation. However, the molecular mechanism underlying this inhibition remains mysterious. Here, using Saccharomyces cerevisiae as a model system, we identify a novel configuration of Scc2 with pre-engaged cohesin and reveal dynamic conformations of the cohesin/Scc2 complex in the loading reaction. We demonstrate that Smc3 acetylation blocks the association of Scc2 with pre-engaged cohesin by impairing the interaction of Scc2 with Smc3's head. Lastly, we show that ATP binding induces the cohesin/Scc2 complex to clamp DNA by promoting the interaction between Scc2 and Smc3 coiled coil. Our results illuminate a dynamic reconfiguration of the cohesin/Scc2 complex during loading and indicate how Smc3 acetylation and ATP regulate this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516938PMC
http://dx.doi.org/10.1038/s41467-023-41596-wDOI Listing

Publication Analysis

Top Keywords

smc3 acetylation
16
cohesin/scc2 complex
12
acetylation atp
8
atp binding
8
scc2 pre-engaged
8
pre-engaged cohesin
8
complex loading
8
interaction scc2
8
complex
5
smc3
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!