Preventing Long-Term Brain Damage by Nerve Agent-Induced Status Epilepticus in Rat Models Applicable to Infants: Significant Neuroprotection by Tezampanel Combined with Caramiphen but Not by Midazolam Treatment.

J Pharmacol Exp Ther

Departments of Anatomy, Physiology, and Genetics (M.D.A.F., V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neuroscience Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, Maryland (J.P.A.)

Published: January 2024

Acute exposure to nerve agents induces a peripheral cholinergic crisis and prolonged status epilepticus (SE), causing death or long-term brain damage. To provide preclinical data pertinent to the protection of infants and newborns, we compared the antiseizure and neuroprotective effects of treating soman-induced SE with midazolam (MDZ) versus tezampanel (LY293558) in combination with caramiphen (CRM) in 12- and 7-day-old rats. The anticonvulsants were administered 1 hour after soman exposure; neuropathology data were collected up to 6 months postexposure. In both ages, the total duration of SE within 24 hours after soman exposure was significantly shorter in the LY293558 plus CRM groups compared with the MDZ groups. Neuronal degeneration was substantial in the MDZ-treated groups but absent or minimal in the groups treated with LY293558 plus CRM. Loss of neurons and interneurons in the basolateral amygdala and CA1 hippocampal area was significant in the MDZ-treated groups but virtually absent in the LY293558 plus CRM groups. Atrophy of the amygdala and hippocampus occurred only in MDZ-treated groups. Neuronal/interneuronal loss and atrophy of the amygdala and hippocampus deteriorated over time. Reduction of inhibitory activity in the basolateral amygdala and increased anxiety were found only in MDZ groups. Spontaneous recurrent seizures developed in the MDZ groups, deteriorating over time; a small percentage of rats from the LY293558 plus CRM groups also developed seizures. These results suggest that brain damage can be long lasting or permanent if nerve agent-induced SE in infant victims is treated with midazolam at a delayed timepoint after SE onset, whereas antiglutamatergic treatment with tezampanel and caramiphen provides significant neuroprotection. SIGNIFICANCE STATEMENT: To protect the brain and the lives of infants in a mass exposure to nerve agents, an anticonvulsant treatment must be administered that will effectively stop seizures and prevent neuropathology, even if offered with a relative delay after seizure onset. The present study shows that midazolam, which was recently approved by the Food and Drug Administration for the treatment of nerve agent-induced status epilepticus, is not an effective neuroprotectant, whereas brain damage can be prevented by targeting glutamate receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10801760PMC
http://dx.doi.org/10.1124/jpet.123.001710DOI Listing

Publication Analysis

Top Keywords

brain damage
16
ly293558 crm
16
nerve agent-induced
12
status epilepticus
12
crm groups
12
mdz groups
12
mdz-treated groups
12
groups
10
long-term brain
8
agent-induced status
8

Similar Publications

Acute ischemic stroke, a medical emergency caused by reduced cerebral blood flow, results in brain cell damage. While commonly associated with older individuals, strokes can also occur in young and middle-aged adults, posing significant socio-economic and health challenges due to the long-term impact of the condition. This poses significant socio-economic and health challenges because stroke is a leading cause of disability and mortality.

View Article and Find Full Text PDF

Acute pain service was consulted for acute pain management in a 40-year-old male who had sustained multiple bilateral rib fractures following a fall injury. In addition to the rib fractures, the patient had also experienced injuries to his lungs and spinal column, both of which required surgeries. Considering the significant nature of pain due to his rib fractures, a multimodal pain management approach that included both pharmacological and non-pharmacological strategies was utilized.

View Article and Find Full Text PDF

Objective: Acute cerebral infarction is a common complication of intracranial tuberculosis (TB), causing irreversible damage to brain tissue and significantly affecting patient prognosis. This study aims to explore the risk factors associated with acute cerebral infarction in patients with intracranial tuberculosis.

Methods: We retrospectively analyzed data from eligible intracranial TB patients treated at our hospital between January 2020 and March 2023.

View Article and Find Full Text PDF

Objective: After anterior cruciate ligament reconstruction (ACLR), patients undergo specific changes in body and specific brain functions, which stem from neuroplasticity. In this study, we employed functional near-infrared spectroscopy (fNIRS) to investigate the characteristics of brain activation in patients after ACLR during a repetitive upstairs task, and compared them with healthy individuals. We aimed to provide a new theoretical basis for the changes in brain function after ACLR and neurorehabilitation of sports injuries.

View Article and Find Full Text PDF

Body awareness (BA) is a complex multi-dimensional construct that refers to the subject's ability to consciously perceive and integrate sensory and proprioceptive information related to the position, movement, and balance of one's own body and body parts. Since it involves multiple brain regions and include different functional networks, it is very often affected by cerebrovascular damage such as stroke. Deficits in the ability to monitor our actions and predict their consequences or recognize our body parts and distinguish them from those of others may emerge after stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!