Chitin deacetylase (CDA), a prominent member of the carbohydrate esterase enzyme family 4 (CE4), is found ubiquitously in bacteria, fungi, insects, and crustaceans. This metalloenzyme plays a pivotal role in recognizing and selectively removing acetyl groups from chitin, thus offering an environmentally friendly and biologically-driven preparation method for chitosan with immense industrial potential. Due to its diverse origins, CDAs sourced from different organisms exhibit unique functions, optimal pH ranges, and temperature preferences. Furthermore, certain organic reagents can induce structural changes in CDAs, influencing their catalytic activity. Leveraging CDA's capabilities extends beyond chitosan biocatalysis, as it demonstrates promising application value in agricultural pest control. In this paper, the source, reaction mechanism, influencing factors, the fermentation methods and applications of CDA are reviewed, which provides theoretical help for the research and application of CDA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2023.121335 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!