In this work, amphiphilic hyaluronan was synthesized by grafting succinylated N-oleoyl-phytosphingosine via esters bonds. Succinylated N-oleoyl-phytosphingosine (sCER) was first prepared by esterification of hydroxyl moieties of the ceramide with succinic anhydride. The esterification of hyaluronan was governed by crowding effect. The oligomeric HA-sCER derivatives exhibited a strong self-aggregation as evidenced by a very low critical aggregation concentration (1.9 μg mL), higher pyrene binding constant (K), and the smallest particle size (30 nm) in solution. The self-aggregation properties demonstrated to be a function of the substitution degree and molecular weight of HA. The prepared derivatives were non-cytotoxic towards cell lines NIH-3T3. Nanoparticles prepared using oligomeric HA-sCER derivatives improved the penetration of Nile red dye through the stratum corneum due to their smaller size (≤50 nm). The fluorescence intensity localized at the stratum corneum was higher for oligomeric HA-sCER. A significant inhibition of the pro-inflammatory cytokine interleukin-6 production was observed in vitro in macrophages differentiated from THP-1 cells. These findings showed that HA-sCER constituted a promising active ingredient for cosmetics use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2023.121283 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!