In recent years, there has been a lot of interest in developing composite hydrogels with superior mechanical and conductive properties. In this study, triple-network (TN) cellulose nanofiber hydrogels were prepared by using cellulose nanofiber as the first network, isotropic poly(acrylamide-co-acrylic acid) as the second network, and polyvinyl alcohol as the third network via a cyclic freezing-thawing process. The strong (9.43 ± 0.14 MPa tensile strength, (445.5 ± 7.0)% elongation-at-break), tough (15.12 ± 0.14 MJ/m toughness), and conductive (0.0297 ± 0.00021 S/cm ionic conductivity) TN cellulose nanofiber hydrogels were effectively created after being pre-stretched in an external force field, cross-linked by Fe and added Li. The produced composite TN cellulose nanofiber hydrogels were successfully used as a flexible sensor for real-time monitoring and detecting human movements, highlighting their potential for wearable electronics, medical technology, and human-machine interaction. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE: Acrylamide (PubChem CID: 6579); Acrylic acid (PubChem CID: 6581); Ammonium persulfate (PubChem CID: 6579); N, N'-methylene bisacrylamide (PubChem CID: 17956053); Sodium bromide (PubChem CID: 253881); Sodium hydroxide (PubChem CID: 14798); Sodium hypochlorite (PubChem CID: 23665760); Sodium chlorite (PubChem CID: 23668197); 2,2,6,6-tetramethylpiperidinyl-1-oxide (PubChem CID: 2724126); Polyvinyl alcohol (PubChem CID: 11199); Lithium chloride (PubChem CID: 433294); Iron nitrate nonahydrate (PubChem CID: 129774236).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2023.121282 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!