Alginates are a broad family of linear (unbranched) polysaccharides derived from brown seaweeds and some bacteria. Despite having only two monomers, i.e. β-d-mannuronate (M) and its C5 epimer α-l-guluronate (G), their blockwise arrangement in oligomannuronate (..MMM..), oligoguluronate (..GGG..), and polyalternating (..MGMG..) blocks endows it with a rather complex interaction pattern with specific counterions and salts. Classic polyelectrolyte theories well apply to alginate as polyanion in the interaction with monovalent and non-gelling divalent cations. The use of divalent gelling ions, such as Ca, Ba or Sr, provides thermostable homogeneous or heterogeneous hydrogels where the block composition affects both macroscopic and microscopic properties. The mechanism of alginate gelation is still explained in terms of the original egg-box model, although over the years some novel insights have been proposed. In this review we summarize several decades of research related to structure-functionships in alginates in the presence of non-gelling and gelling cations and present some novel applications in the field of self-assembling nanoparticles and use of radionuclides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2023.121280 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!