The intriguing scientific relationship between autoimmunity and cancer immunology have been traditionally indulged to throw spotlight on novel pathological targets. Understandably, these "slowly killing" diseases are on the opposite ends of the immune spectrum. However, the immune regulatory mechanisms between autoimmunity and cancer are not always contradictory and sometimes mirror each other based on disease stage, location, and timepoint. Moreover, the blockade of immune checkpoint molecules or signalling pathways that unleashes the immune response against cancer is being leveraged to preserve self-tolerance and treat many autoimmune disorders. Therefore, understanding the common crucial factors involved in cancer is of paramount importance to paint the autoimmune disease spectrum and validate novel drug candidates. In the current review, we will broadly describe how ZEB1, or Zinc-finger E-box Binding Homeobox 1, reinforces immune exhaustion in cancer or contributes to loss of self-tolerance in auto-immune conditions. We made an effort to exchange information about the molecular pathways and pathological responses (immune regulation, cell proliferation, senescence, autophagy, hypoxia, and circadian rhythm) that can be regulated by ZEB1 in the context of autoimmunity. This will help untwine the intricate and closely postured pathogenesis of ZEB1, that is less explored from the perspective of autoimmunity than its counterpart, cancer. This review will further consider several approaches for targeting ZEB1 in autoimmunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2023.122115 | DOI Listing |
J Cell Mol Med
January 2025
Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
This study identifies microRNAs (miRNAs) with significant discriminatory power in distinguishing melanoma from nevus, notably hsa-miR-26a and hsa-miR-211, which have exhibited diagnostic potential with accuracy of 81% and 78% respectively. To enhance diagnostic accuracy, we integrated miRNAs into various machine-learning (ML) models. Incorporating miRNAs with AUC scores above 0.
View Article and Find Full Text PDFPediatr Blood Cancer
January 2025
Paediatric Oncology Immunology Haematology Unit, Armand-Trousseau University Hospital, Sorbonne Université, APHP, Paris, France.
Nat Metab
January 2025
Centre for Orthopaedic Research, Medical School of the University of Western Australia, Nedlands, Western Australia, Australia.
Intercellular mitochondria transfer is an evolutionarily conserved process in which one cell delivers some of their mitochondria to another cell in the absence of cell division. This process has diverse functions depending on the cell types involved and physiological or disease context. Although mitochondria transfer was first shown to provide metabolic support to acceptor cells, recent studies have revealed diverse functions of mitochondria transfer, including, but not limited to, the maintenance of mitochondria quality of the donor cell and the regulation of tissue homeostasis and remodelling.
View Article and Find Full Text PDFMol Ther
January 2025
Leibniz Institute for Immunotherapy (LIT), Division of Genetic Immunotherapy, Regensburg, Germany. Electronic address:
A rapidly growing number of chimeric antigen receptors (CARs) is being translated into cell therapy for malignant and autoimmune diseases. While cancer cell-selective CAR targeting is undergoing continuous refinement, specific testing for overlooked recognition of healthy tissues is commonly not performed, which potentially results in underestimating of the risk of severe tissue damage upon CAR T cell application. Using the FcμR/IgM receptor/FAIM3/TOSO-specific CAR, designed to target chronic lymphocytic leukemia cells, we exemplarily outline a screen to uncover reactivities to healthy tissues and discuss the value of such pre-clinical testing to improve safety in CAR T cell application.
View Article and Find Full Text PDFImmunometabolism (Cobham)
January 2025
Institute for Systems Biology, Seattle, WA, USA.
The nucleotide-binding domain, leucine-rich repeat, and pyrin domain containing-protein 3 (NLRP3) inflammasome is a multiprotein complex that plays a critical role in the innate immune response to both infections and sterile stressors. Dysregulated NLRP3 activation has been implicated in a variety of autoimmune and inflammatory diseases, including cryopyrin-associated periodic fever syndromes, diabetes, atherosclerosis, Alzheimer's disease, inflammatory bowel disease, and cancer. Consequently, fine-tuning NLRP3 activity holds significant therapeutic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!