Angular dependence of the magnetization relaxation in Co/Pt multilayers.

J Phys Condens Matter

Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America.

Published: September 2023

We study the influence of defects in Co/Pt multilayers on the room-temperature magnetization reversal and relaxation mechanisms via angle-dependent magnetic viscosity and coercive field measurements. The data reveal a transition from pinning-dominated domain wall propagation to a sequence of pinning-dominated and uniform switching, with increasing tilt away from the normal direction. The leading role of the dendritic domain wall propagation in the nanogranular exchange-coupled films is corroborated by the scaling of relaxation times, the angular dependence of the coercive field, and Kerr microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/acfc8fDOI Listing

Publication Analysis

Top Keywords

angular dependence
8
co/pt multilayers
8
coercive field
8
domain wall
8
wall propagation
8
dependence magnetization
4
magnetization relaxation
4
relaxation co/pt
4
multilayers study
4
study influence
4

Similar Publications

Twisted bilayer graphene (TBG) has drawn considerable attention due to its angle-dependent electrical, optical, and mechanical properties, yet preparing and identifying samples at specific angles on a large scale remains challenging and labor-intensive. Here, a data-driven strategy that leverages Raman spectroscopy is proposed in combination with deep learning to rapidly and non-destructively decode and predict the twist angle of TBG across the full angular range. By processing high-dimensional Raman data, the deep learning model extracts hidden information to achieve precise twist angle identification.

View Article and Find Full Text PDF

A significant proportion of patients who have recovered from COVID-19 suffer from persistent symptoms, referred to as "post-acute sequelae of SARS-CoV-2 infection (PASC)". Abnormal brain intrinsic activity has been observed in PASC patients, but the patterns of frequency-dependent intrinsic activity in the PASC and non-PASC (recovered COVID-19 patients without persistent symptoms) groups and their association with neuropsychiatric sequelae remain unclear in PASC. Twenty-nine PASC patients, 27 non-PASC subjects, and 31 healthy controls (HCs) were recruited.

View Article and Find Full Text PDF

Observation of Real-Time Spin-Orbit Torque Driven Dynamics in Antiferromagnetic Thin Film.

Adv Mater

January 2025

Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA.

In the burgeoning field of spintronics, antiferromagnetic materials (AFMs) are attracting significant attention for their potential to enable ultra-fast, energy-efficient devices. Thin films of AFMs are particularly promising for practical applications due to their compatibility with spin-orbit torque (SOT) mechanisms. However, studying these thin films presents challenges, primarily due to the weak signals they produce and the rapid dynamics driven by SOT, that are too fast for conventional electric transport or microwave techniques to capture.

View Article and Find Full Text PDF

Accuracy of full arch scans performed with nine different scanning patterns- an in vitro study.

Clin Oral Investig

January 2025

Department of Prosthetic Dentistry, LMU University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany.

Objective: Evaluation of the accuracy of direct digitization of maxillary scans depending on the scanning strategy.

Materials And Methods: A maxillary model with a metal bar as a reference structure fixed between the second molars was digitized using the CEREC Primescan AC scanner (N = 225 scans). Nine scanning strategies were selected (n = 25 scans per strategy), differing in scan area segmentation (F = full jaw, H = half jaw, S = sextant) and scan movement pattern (L = linear, Z = zig-zag, C = combined).

View Article and Find Full Text PDF

Fabrication of Ag based Surface Enhanced Raman Scattering substrates with periodic mask arrays by electron beam deposition.

Anal Chim Acta

February 2025

Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.

Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!