Hyperandrogenemia and polycystic ovary syndrome are a result of the imbalance of androgen levels in females. Androgen receptor (Ar) mediates the effect of androgen, and this study examines how neuronal Ar in the central nervous system mediates metabolism under normal and increased androgen conditions in female mice. The neuron-specific ARKO mouse (SynARKO) was created from female (Ar fl/wt; synapsin promoter driven Cre) and male (Ar fl/y) mice. A glucose tolerance test revealed impaired glucose tolerance that was partially alleviated in the SynARKO-dihydrotestosterone (DHT) mice compared with Con-DHT mice after 4 months of DHT treatment. Heat production and food intake was higher in Con-DHT mice than in Con-veh mice; these effects were not altered between SynARKO-veh and SynARKO-DHT mice, indicating that excess androgens may partially alter calorie intake and energy expenditure in females via the neuronal Ar. The pAkt/Akt activity was higher in the hypothalamus in Con-DHT mice than in Con-veh mice, and this effect was attenuated in SynARKO-DHT mice. Western blot studies show that markers of inflammation and microglia activation, such as NF-kB p-65 and IBA1, increased in the hypothalamus of Con-DHT mice compared with Con-veh. These studies suggest that neuronal Ar mediates the metabolic impacts of androgen excess in females.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/endocr/bqad141 | DOI Listing |
Endocrinology
September 2023
Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA.
Hyperandrogenemia and polycystic ovary syndrome are a result of the imbalance of androgen levels in females. Androgen receptor (Ar) mediates the effect of androgen, and this study examines how neuronal Ar in the central nervous system mediates metabolism under normal and increased androgen conditions in female mice. The neuron-specific ARKO mouse (SynARKO) was created from female (Ar fl/wt; synapsin promoter driven Cre) and male (Ar fl/y) mice.
View Article and Find Full Text PDFFASEB J
October 2021
Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Androgen excess is one of the most common endocrine disorders of reproductive-aged women, affecting up to 20% of this population. Women with elevated androgens often exhibit hyperinsulinemia and insulin resistance. The mechanisms of how elevated androgens affect metabolic function are not clear.
View Article and Find Full Text PDFJCI Insight
August 2019
Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Many women with hyperandrogenemia suffer from irregular menses and infertility. However, it is unknown whether androgens directly affect reproduction. Since animal models of hyperandrogenemia-induced infertility are associated with obesity, which may impact reproductive function, we have created a lean mouse model of elevated androgen using implantation of low dose dihydrotestosterone (DHT) pellets to separate the effects of elevated androgen from obesity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!