Background: In vivo dosimetry (IVD) is gaining interest for treatment delivery verification in HDR-brachytherapy. Time resolved methods, including source tracking, have the ability both to detect treatment errors in real time and to minimize experimental uncertainties. Multiprobe IVD architectures holds promise for simultaneous dose determinations at the targeted tumor and surrounding healthy tissues while enhancing measurement accuracy. However, most of the multiprobe dosimeters developed so far either suffer from compactness issues or rely on complex data post-treatment.
Purpose: We introduce a novel concept of a compact multiprobe scintillator detector and demonstrate its applicability in HDR-brachytherapy. Our fabricated seven-fiber probing system is sufficiently narrow to be inserted in a brachytherapy needle or in a catheter.
Methods: Our multiprobe detection system results from the parallel implementation of six miniaturized inorganic Gd O S:Tb scintillator detectors at the end of a bundle of seven fibers, one fiber is kept bare to assess the stem effect. The resulting system, which is narrower than 320 microns, is tested with a MicroSelectron 9.14 Ci Ir-192 HDR afterloader, in a water phantom. The detection signals from all six probes are simultaneously read with a sCMOS camera (at a rate of 0.06 s). The camera is coupled to a chromatic filter to cancel Cerenkov signal induced within the fibers upon exposure. By implementing an aperiodic array of six scintillating cells along the bundle axis, we first determine the range of inter-probe spacings leading to optimal source tracking accuracy (first tracking method). Then, three different source tracking algorithms involving all the scintillating probes are tested and compared. In each of these four methods, dwell positions are assessed from dose measurements and compared to the treatment plan. Dwell time is also determined and compared to the treatment plan.
Results: The optimum inter-probe spacing for an accurate source tracking ranges from 15 to 35 mm. The optimum detection algorithm consists of adding the readout signals from all detector probes. In that case, the error to the planned dwell positions is of 0.01 ± 0.14 mm and 0.02 ± 0.29 mm at spacings between the source and detector axes of 5.5 and 40 mm, respectively. Using this approach, the average deviations to the expected dwell time are of s and s, at spacings between source and probe axes of 5.5 and 20 mm, respectively.
Conclusions: Our six-probe Gd O S:Tb dosimeter coupled to a sCMOS camera can perform time-resolved treatment verification in HDR brachytherapy. This detection system of high spatial and temporal resolutions (0.25 mm and 0.06 s, respectively) provides a precise information on the treatment delivery via a dwell time and position verification of unmatched accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.16745 | DOI Listing |
STAR Protoc
January 2025
Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Department of Pediatrics, Cardiovascular Research Institute, Institute for Human Genetics, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:
As light sheet fluorescence microscopy (LSFM) becomes widely available, reconstruction of time-lapse imaging will further our understanding of complex biological processes at cellular resolution. Here, we present a comprehensive workflow for in toto capture, processing, and analysis of multi-view LSFM experiments using the ex vivo mouse embryo as a model system of development. Our protocol describes imaging on a commercial LSFM instrument followed by computational analysis in discrete segments, using open-source software.
View Article and Find Full Text PDFeNeuro
January 2025
University of Rochester Medical Center, Department of Neuroscience,
A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons, and likely supports local neuronal maturation and emerging synaptogenesis.
View Article and Find Full Text PDFBackground: Early detection and accurate forecasting of AD progression are crucial for timely intervention and management. This study leverages multi-modal data, including MRI scans, brain volumetrics, and clinical notes, utilizing Machine Learning (ML), Deep Learning (DL) and a range of ensemble methods to enhance the forecasting accuracy of Alzheimer's disease.
Method: We utilize the OASIS-3 longitudinal dataset, tracking 1,098 patients over 30 years.
Background: Changes in the structure and use of language are well established clinical characteristics of Alzheimer's disease. In recent years, there has been a concerted effort to objectively quantify these changes using the latest advances in Natural Language Processing (NLP) tools. Much academic research has been conducted to evaluate how these speech characteristics change with the course of illness, but they have yet to be elevated beyond exploratory endpoints in trials.
View Article and Find Full Text PDFSleep Adv
December 2024
Department of Psychology and Program in Neuroscience, Furman University, Greenville, SC, USA.
Robert Stickgold's research was among the earliest to rigorously quantify the effect of learning on dream content. As a result, we learned that dreaming is influenced by the activation of newly formed memory traces in the sleeping brain. Exactly how this happens is an ongoing area of investigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!