Nano-metal-organic frameworks (nano-MOFs) labeled with radionuclides have shown great potential in the anticancer field. In this work, we proposed to combine fluorescence imaging (FI) with nuclear imaging to systematically evaluate the tumor inhibition of new nanomedicines from living cancer cells to the whole body, guiding the design and application of a high-performance anticancer radiopharmaceutical to glioma. An Fe-based nano-MOF vector, MIL-101(Fe)/PEG-FA, was decorated with fluorescent sulfo-cyanine7 (Cy7) to investigate the binding affinity of the targeting nanocarriers toward glioma cells , as well as possible administration modes for cancer therapy. Then, lutetium-177 (Lu)-labeled MIL-101(Fe)/PEG-FA was prepared for high-sensitive imaging and targeted radiotherapy of glioma . It has been demonstrated that the obtained Lu-labeled MIL-101(Fe)/PEG-FA can work as a complementary probe to rectify the cancer binding affinity of the prepared nanocarrier given by fluorescence imaging, providing more precise biodistribution information. Besides, Lu-labeled MIL-101(Fe)/PEG-FA has excellent antitumor effect, leading to cell proliferation inhibition, upregulation of intracellular reactive oxygen species, tumor growth suppression, and immune response-related protein and cytokine upregulation. This work reveals that optical imaging and nuclear imaging can work complementarily as multimodal imaging in the design and evaluation of anticancer nanomedicine, offering a MIL-101(Fe)/PEG-FA-based pharmaceutical with potential in tumor endoradiotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c11098 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!