Methanol intercalated kaolinite (Kaol) plays an important role in the intercalation, exfoliation, and organic modification of kaolinite nanoclay. However, the evolution of the layer structure of Kaol and its thermodynamic stability during the methanol intercalation process have not been clarified at the atomic level. Here, by combination of density functional theory (DFT) calculation and experimental characterizations, the interlayer bonding, structure evolution, and energetics from dimethyl sulfoxide (DMSO) intercalated Kaol to methanol intercalated Kaol were investigated. Partial methanol molecules entered the interlayers of Kaol to form some intermediate structures with the same -spacing as that of DMSO intercalated Kaol. Different numbers of grafted methoxy and water molecules coexist together in the interlayer to form the final structures of methanol intercalated kaolinite (MeO/HO/Kaol). The whole intercalation process is energy-consuming, and the presence of DMSO would affect the intercalation of methanol. Meanwhile, the formation energy from intermediate structures to final structures was found reduced under the participation of water.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.3c02185DOI Listing

Publication Analysis

Top Keywords

methanol intercalated
16
intercalated kaolinite
12
intercalated kaol
12
kaolinite nanoclay
8
density functional
8
functional theory
8
intercalation process
8
dmso intercalated
8
intermediate structures
8
final structures
8

Similar Publications

The development of advanced Pt-alternative anode electrocatalysts with high activity and reliable stability is critical to overcoming the technical challenges of direct methanol fuel cells. Here, we propose a robust bottom-up strategy for the spatial construction of mesoporous hollow carbon sphere (HCS)-embedded MXene architectures decorated with ultrafine Rh nanocrystals (Rh/HCS-MX) via stereoscopic coassembly reactions. The rational intercalation of HCS effectively separates the MXene nanowalls to achieve a rapid mass-transfer efficiency, while the intimate coupling of the hybrid carrier with Rh nanocrystals enables their electronic structure optimization, thus contributing to strong synergistic catalytic effects.

View Article and Find Full Text PDF

In this work kaolinite nanotubes (KNT) were obtained from commercial kaolin AKF-78 (Uzbekistan) by starting material sequential intercalation by DMSO and methanol, followed by treatment with a cetyltrimethylammonium chloride solution. Acid functionalization of KNT for catalytic applications was successfully performed for the first time using a two-step treatment with piranha solution (HSO-HO), which resulted in the removal of organic impurities as synthetic artifacts and an increase in specific surface area by 3.9 times (up to 159 m g), pore volume by 1.

View Article and Find Full Text PDF

What Elements Really Intercalate into Pd Lattice When Heated in Dimethylformamide?

J Am Chem Soc

June 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

Palladium hydrides (PdH) are pivotal in both fundamental research and practical applications across a wide spectrum. PdH nanocrystals, synthesized by heating in dimethylformamide (DMF), exhibit remarkable stability, granting them widespread applications in the field of electrocatalysis. However, this stability appears inconsistent with their metastable nature.

View Article and Find Full Text PDF

In vitro and in vivo antitrypanosomal activity of the fresh leaves of Ranunculus Multifidus Forsk and its major compound anemonin against Trypanosoma congolense field isolate.

BMC Vet Res

January 2024

Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.

Background: Animal trypanosomiasis is a major livestock problem due to its socioeconomic impacts in tropical countries. Currently used trypanocides are toxic, expensive, and the parasites have developed resistance to the existing drugs, which calls for an urgent need of new effective and safe chemotherapeutic agents from alternative sources such as medicinal plants. In Ethiopian traditional medicine fresh leaves of Ranunculus multifidus Forsk, are used for the treatment of animal trypanosomiasis.

View Article and Find Full Text PDF

Pressure-induced swelling has been reported earlier for several hydrophilic layered materials. MXene Ti3C2Tx is also a hydrophilic layered material composed by 2D sheets but so far pressure-induced swelling is reported for this material only under conditions of shear stress at MPa pressures. Here, high-pressure experiments are performed with MXenes prepared by two methods known to provide "clay-like" materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!