A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HiREX: High-Throughput Reactivity Exploration for Extended Databases of Transition-Metal Catalysts. | LitMetric

HiREX: High-Throughput Reactivity Exploration for Extended Databases of Transition-Metal Catalysts.

J Chem Inf Model

Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.

Published: October 2023

A method is introduced for the automated analysis of reactivity exploration for extended in silico databases of transition-metal catalysts. The proposed workflow is designed to tackle two key challenges for bias-free mechanistic explorations on large databases of catalysts: (1) automated exploration of the chemical space around each catalyst with unique structural and chemical features and (2) automated analysis of the resulting large chemical data sets. To address these challenges, we have extended the application of our previously developed ReNeGate method for bias-free reactivity exploration and implemented an automated analysis procedure to identify the classes of reactivity patterns within specific catalyst groups. Our procedure applied to an extended series of representative Mn(I) pincer complexes revealed correlations between structural and reactive features, pointing to new channels for catalyst transformation under the reaction conditions. Such an automated high-throughput virtual screening of systematically generated hypothetical catalyst data sets opens new opportunities for the design of high-performance catalysts as well as an accelerated method for expert bias-free high-throughput in silico reactivity exploration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565810PMC
http://dx.doi.org/10.1021/acs.jcim.3c00660DOI Listing

Publication Analysis

Top Keywords

reactivity exploration
16
automated analysis
12
exploration extended
8
databases transition-metal
8
transition-metal catalysts
8
data sets
8
reactivity
5
exploration
5
automated
5
hirex high-throughput
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!