Bioinspired nanotopography artificially fabricated on titanium surfaces offers a solution for the rising issue of postoperative infections within orthopedics. On a small scale, hydrothermal etching has proven to deliver an effective antimicrobial nanospike surface. However, translation to an industrial setting is limited by the elevated synthesis temperature (150 °C) and associated equipment requirements. Here, for the first time, we fabricate surface nanostructures using comparatively milder synthesis temperatures (75 °C), which deliver physicochemical properties and antimicrobial capability comparable to the high-temperature surface. Using a KOH etchant, the simultaneous formation of titania and titanate crystals at both temperatures produces a one-dimensional nanostructure array. Analysis indicated that the formation mechanism comprises dissolution and reprecipitation processes, identifying the deposited titanates as hydrated layered tetra-titanates (KTiO·HO). A proposed nanospike formation mechanism was confirmed through the identification of a core and outer shell for individual nanostructures, primarily comprised of titanates and titania, respectively. Etching conditions dictated crystalline formation, favoring a thicker titanate core for nanorods under higher synthesis temperatures and etchant concentrations. A bactericidal investigation showed the efficacy against Gram-negative bacteria for a representative low-temperature nanosurface (34.4 ± 14.4%) was comparable to the higher temperature nanosurface (34.0 ± 17.0%), illustrating the potential of low-temperature hydrothermal synthesis. Our results provide valuable insight into the applicability of low-temperature etching protocols that are more favorable in large-scale manufacturing settings.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c09525DOI Listing

Publication Analysis

Top Keywords

low-temperature hydrothermal
8
hydrothermal etching
8
synthesis temperatures
8
formation mechanism
8
nanoscale titanium
4
surface
4
titanium surface
4
surface engineering
4
low-temperature
4
engineering low-temperature
4

Similar Publications

Insights into the regulation mechanisms of dual hydrothermal treatment on the structure and digestive characteristics of A- and B-type wheat starch granules.

Food Res Int

January 2025

State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China. Electronic address:

Hydrothermal treatment is a physical modification technology to alter starch structures for the production of resistant starch (RS). However, the underlying regulation mechanism of the multiscale structure and digestive properties of starch by dual hydrothermal synergistic treatment remains unclear. To solve this problem, A- and B-type wheat starch granules (AWS and BWS) were separated and subjected to toughening and heat-moisture synergistic treatment (THT) with various moisture content (10 %, 15 %, 20 %, 25 %).

View Article and Find Full Text PDF

Direct regeneration, which involves replenishing lithium in spent cathode materials, is emerging as a promising recycling technique for spent lithium iron phosphate (s-LFP) cathodes. Unlike solid-state regeneration, the aqueous relithiation method consumes less energy, ensures even lithium replenishment, and significantly recovers the capacity of s-LFP. However, liquid-phase lithium replenishment formulations are generally less standardized.

View Article and Find Full Text PDF

In this study, the novel activated carbon developed from fruit stone, through hydrothermal treatment at low pressure and temperature, was utilized for the removal of 4-nitrophenol, 4-chlorophenol, and phenol from water. The activated carbon produced (AC-HTPEFS) showed a well-developed porosity with a surface area of 569 m g and a total pore volume of 0.342 cm g.

View Article and Find Full Text PDF

Aerobic composting with hydrothermal carbonization aqueous phase conditioning: Stabilized active gaseous nitrogen emissions.

J Hazard Mater

January 2025

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Luhe), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.

The losses of reactive gaseous nitrogen (N), including ammonia (NH) and nitrous oxide (NO), represent a pressing environmental issue during composting. However, the impact of hydrothermal carbonization aqueous phase (HAP) on compost gaseous N emissions and the underlying mechanisms remain largely unexplored. Herein, Quercus acutissima leaves-derived HAP and its modified HAP (MHAP) were added to the chicken manure compost at 5 % (w/w) and 10 % (w/w) applied rates to observe changes in NH and NO fluxes, compost properties and bacterial communities.

View Article and Find Full Text PDF

Herein, porous SnO microspheres in a three-dimensional (3D) hierarchical architecture were successfully synthesized via a facile hydrothermal route utilizing d-(+)-glucose and cetyltrimethylammonium bromide (CTAB), which act as reducing and structure-directing agents, respectively. Controlled adjustment of the CTAB to glucose mole ratio, reaction temperature, reaction time, and the calcination parameters all provided important clues toward optimizing the final morphologies of SnO with exceptional structural stability and reasonable monodispersity. Electron microscopy analysis revealed that microspheres formed were hierarchical self-assemblies of numerous primary SnO nanoparticles of ∼3-8 nm that coalesce together to form nearly monodispersed and ordered spherical structures of sizes in the range of 230-250 nm and are appreciably porous.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!