A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insights into Structural Behaviors of Thiolated and Aminated Reduced Graphene Oxide Supports to Understand Their Effect on MOR Efficiency. | LitMetric

It is essential to develop novel catalysts with high catalytic activity, strong durability, and good stability for further application in methanol fuel cells. In this work, we present for the first time the effect of the chemical functional groups (thiol and amine) with different electron affinity in reduced graphene oxide supports on the morphology and catalytic activity of platinum nanoparticles for the methanol oxidation reaction. Hydroxyl groups on graphene oxide were initially brominated and then transformed to the desired functional groups. The good dispersion of metal nanoparticles over functionalized carbon substrates (particle size less than 5 nm) with good durability, even at a limited functionalization degree (less than 7%) has been demonstrated by morphological and structural studies. The durability of the catalysts was much improved via strong coordination between the metal and nitrogen or sulfur atoms. Impressively, the catalytic activity of platinum nanoparticles on aminated reduced graphene oxide was found to be much better than that on thiolated graphene oxide despite the weaker affinity between amine and noble metals. These findings support further developing new graphene derivatives with the desired functionalization for electronics and energy applications..

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c01446DOI Listing

Publication Analysis

Top Keywords

graphene oxide
20
reduced graphene
12
catalytic activity
12
aminated reduced
8
oxide supports
8
functional groups
8
activity platinum
8
platinum nanoparticles
8
graphene
6
oxide
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!