Two-electron oxidations are ubiquitous and play a key role in the synthesis and catalysis. For transition metals and actinides, two-electron oxidation often takes place at a single-metal site. However, redox reactions at rare-earth metals have been limited to one-electron processes due to the lack of accessible oxidation states. Despite recent advancements in nontraditional oxidation state chemistry, the low stability of low-valent compounds and large disparity among different oxidation states prevented the implementation of two-electron processes at a single rare-earth metal center. Here we report two-electron oxidations at a cerium(II) center to yield cerium(IV) terminal oxo and imido complexes. A series of cerium(II-IV) complexes supported by a tripodal tris(amido)arene ligand were synthesized and characterized. Experimental and theoretical studies revealed that the cerium(II) complex is best described as a 4f ion stabilized by δ-backdonation to the anchoring arene, while the cerium(IV) oxo and imido complexes exhibit multiple bonding characters. The accomplishment of two-electron oxidations at a single cerium center brings a new facet to molecular rare-earth metal chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c06613 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!