Despite their high gravimetric and volumetric energy densities, boron (B) particles suffer from poor oxidative energy release rates as the boron oxide (BO) shell impedes the diffusivity of O to the particle interior. Recent experiemental studies have shown that the addition of metals with a lower free energy of oxidation, such as Mg, can reduce the oxide shell of B and enhance the energetic performance of B by ∼30-60%. However, the exact underlying mechanism behind the reactivity enhancement is unknown. Here, we performed DFTB-MD simulations to study the reaction of Mg vapor with a BO surface. We found that the Mg becomes oxidized on the BO surface, forming a MgBO phase, which induces a tensile strain in the B-O bond at the MgBO-BO interface, simultaneously reducing the interfacial B and thereby developing dangling bonds. The interfacial bond straining creates an overall surface expansion, indicating the presence of a net tensile strain. The B with dangling bonds can act as active centers for gas-phase O adsorption, thereby increasing the adsorption rate, and the overall tensile strain on the surface will increase the diffusion flux of adsorbed O through the surface to the particle core. As the overall B particle oxidation rate is dependent on both the O adsorption and diffusion rates, the enhancement in both of these rates increases the overall reactivity of B particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c00982 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Road 26, Shijiazhuang 050080, PR China.
The development of silk fibroin-based hydrogels with excellent biocompatibility, aqueous processability, and facile controllability in structure is indeed an exciting advancement for biological research and strain sensor applications. However, silk fibroin-based hydrogel strain sensors that combine high conductivity, high stretchability, reusability, and high selectivity are still desired. Herein, we report a simple method for preparing double-network hydrogels including silk fibroin and poly(acrylic acid) sodium-polyacrylate (PAA-PAAS) networks.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
Polymer-brush-grafted nanoparticles (PGNPs) that can be covalently crosslinked post-processing enable the fabrication of mechanically robust and chemically stable polymer nanocomposites with high inorganic filler content. Modifying PGNP brushes to append UV-activated crosslinkers along the polymer chains would permit a modular crosslinking strategy applicable to a diverse range of nanocomposite compositions. Further, light-activated crosslinking reactions enable spatial control of crosslink density to program intentionally inhomogeneous mechanical responses.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China.
Mechanically responsive polymer materials have garnered significant interest due to their unique ability to respond to external forces, leading to groundbreaking applications in visual stress mapping and damage detection. However, their use in fibers remains relatively unexplored. In this study, a mechanoresponsive polymer is synthesized by incorporating a spiropyran (SP) mechanophore into a polyurethane backbone.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
Background: Transfemoral osseointegrated prostheses, like other uncemented prostheses experience the risk of aseptic loosening and post-operative periprosthetic fractures, with an incidence between 3% and 30%. To date, however, osseointegrated off-the-shelf prostheses are manufactured in a limited number of sizes, and some patients do not meet the strict eligibility criteria of commercial devices. A customized osseointegrated stem was developed and a pre-clinical in vitro investigation of the stem was performed, to evaluate its biomechanical performance.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
Modeling and Molecular Simulation Group, São Paulo State University (UNESP), School of Sciences, Bauru 17033-360, Brazil.
This study introduces the penta-structured semiconductor p-CGeP through density functional theory simulations, which possesses an indirect band gap transition of 3.20 eV. Mechanical analysis confirms the mechanical stability of p-CGeP, satisfying Born-Huang criteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!