The pathogenicity of is poorly understood, mainly due to the absence of efficient genetic tools. A polyethylene glycol-mediated transformation protocol was recently developed for the reference strain M132 using the pMT85-Tet plasmid. The transformation efficiency remained low, hampering generation of a large mutant library. In this study, we improved transformation efficiency by designing -specific pMT85 derivatives. Using the Gibson Assembly, the -derived (M) gene of the pMT85-Tet plasmid was replaced by that of a clinical isolate. Next, the -derived spiralin gene promoter driving (M) expression was substituted by one of three putative regulatory regions (RRs): the arginine deiminase RR, the elongation factor Tu RR, or the 68 bp SynMyco synthetic RR. SynMyco-based construction led to a 100-fold increase in transformation efficiency in M132. This construct was also transformed into the PG21 reference strain and three other clinical isolates. The transposon insertion locus was determined for 128 M132-transformants. The majority of the impacted coding sequences encoded lipoproteins and proteins involved in DNA repair or in gene transfer. One transposon integration site was in the mycoplasma immunoglobulin protease gene. Phenotypic characterization of the mutant showed complete disruption of the human antibody cleavage ability of the transformant. These results demonstrate that our -optimized plasmid can be used to generate large random transposon insertion libraries, enabling future studies of the pathogenicity of . IMPORTANCE is an opportunistic human pathogen, whose physiopathology is poorly understood and for which genetic tools for transposition mutagenesis have been unavailable for years. A PEG-mediated transformation protocol was developed using the pMT85-Tet plasmid, but the transformation efficiency remained low. We designed a modified pMT85-Tet plasmid suitable for . The use of a synthetic regulatory region upstream of the antibiotic resistance marker led to a 100-fold increase in the transformation efficiency. The generation and characterization of large transposon mutagenesis mutant libraries will provide insight into pathogenesis. We selected a transformant in which the transposon was integrated in the locus encoding the immunoglobulin cleavage system MIB-MIP. Phenotypic characterization showed that the wild-type strain has a functional MIB-MIP system, whereas the mutant strain had lost the ability to cleave human immunoglobulins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581049 | PMC |
http://dx.doi.org/10.1128/spectrum.01873-23 | DOI Listing |
Plant Foods Hum Nutr
January 2025
Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru.
This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
AIDA Lab. College of Computer and Information Sciences (CCIS), Prince Sultan University, Riyadh, Saudi Arabia.
The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Renewable Resources, University of Alberta, Edmonton, Canada.
Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, No. 20 Dongda Street, Beijing, 100071, Fengtai District, China.
Human β-defensin (HBD) has been recognized as a promising antimicrobial agent due to its broad-spectrum antimicrobial activity against various pathogens. In our previous work, we engineered a chimeric human β-defensin, designated H4, by fusing human β-defensin 3 and human β-defensin 4, resulting in enhanced antimicrobial activity and salt stability. However, the high cost of chemical synthesis due to the relatively large number of amino acids in H4 has limited its applications.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China.
The diverse utility of acyclic vinylsilanes has driven the interest in the synthesis of enantioenriched vinylsilanes bearing a Si-stereogenic center. However, the predominant approaches for catalytic asymmetric generation of Si-stereogenic vinylsilanes have mainly relied on transition metal-catalyzed reactions of alkynes with different silicon sources. Here we successfully realize the enantioselective synthesis of linear silicon-stereogenic vinylsilanes with good yields and enantiomeric ratios from simple alkenes under rhodium catalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!