A novel nanomagnet modified with nickel ferrite nanoparticles (NPs) coated with hybrid chitosan (Cs-NiFeO) was synthesized using the co-precipitation method. The resulting nanomagnets were characterized using various techniques. The size of the nanomagnetic particles was estimated to be about 40 nm based on the transmission electron microscopy (TEM) image and X-ray diffraction analysis (XRD) pattern (using the Debye-Scherrer equation). Scanning electron microscopy (SEM) images indicated that the surface of Cs-NiFeO NPs is flatter and smoother than the uncoated NiFeO NPs. According to value stream mapping (VSM) analysis, the magnetization value of Cs-NiFeO NPs (17.34 emu/g) was significantly lower than NiFeO NPs (40.67 emu/g). The Cs-NiFeO NPs indicated higher antibacterial properties than NiFeO NPs and Cs. The minimum inhibitory concentrations of Cs-NiFeO NPs against S. aureus and E. coli were 128 and 256 mg/mL, respectively. Antioxidant activity (evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging test) for NiFeO NPs and Cs-NiFeO NPs at the concentration of 100 µg/mL were 35% and 42%, respectively. Consequently, the synthesized Cs-NiFeO NPs can be proposed as a viable material for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516962 | PMC |
http://dx.doi.org/10.1038/s41598-023-42974-6 | DOI Listing |
ACS Nano
January 2025
Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China.
Methicillin-resistant (MRSA) causes osteomyelitis (OM), which seriously threatens public health due to its antimicrobial resistance. To increase the sensitivity of antibiotics and eradicate intracellular bacteria, a Zn and vancomycin (Van) codelivered nanotherapeutic (named Man-Zn/Van NPs) was fabricated and characterized via mannose (Man) modification. Man-Zn/Van NPs exhibit significant inhibitory activity against extra- and intracellular MRSA and obviously decrease the minimum inhibitory concentration of Van.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, 14004 Cordoba, Spain.
Gold nanoparticles (AuNPs) play a key role in the field of nanomedicine due to their fascinating plasmonic properties as well as their great biocompatibility. An intriguing application is the use of plasmonic photothermal therapy (PPTT) mediated by anisotropic AuNPs irradiated with a near-infrared (NIR) laser for treating ocular diseases in ophthalmology. For this purpose, bipyramidal-shaped AuNPs (BipyAu), which were surface-functionalized with three different organic ligands (citrate, polystyrene sulphonate (PSS), and cetyltrimethylammonium bromide (CTAB)), were synthesized.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
January 2025
Faculty of Dentistry, Department of Periodontics, Complutense University of Madrid, Madrid, Spain.
Peri-implant diseases, such as peri-implantitis, affect up to 47% of dental implant recipients, primarily due to biofilm formation. Current decontamination methods vary in efficacy, prompting interest in polymeric nanoparticles (NPs) for their antimicrobial and protein-specific cleaning properties. This study evaluated the efficacy of polymeric nanoparticles (NPs) in decontaminating titanium dental implants by removing proteinaceous pellicle layers and resisting recontamination.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Kingdom of Saudi Arabia.
Nanogels (NGs) are presently the focus of extensive research because of their special qualities, including minimal particle size, excellent encapsulating efficacy, and minimizing the breakdown of active compounds. As a result, NGs are great candidates for drug delivery systems. Cross-linked nanoparticles (NPs) called stimulus-responsive NGs are comprised of synthetic, natural, or a combination of natural and synthetic polymers.
View Article and Find Full Text PDFAnal Chem
January 2025
Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, P. R. China.
The development of sophisticated nanomaterials with synergistically enhanced functionalities and applications has been greatly promoted via the construction of Janus nanoparticles with controlled compositions. In this work, we described and demonstrated the formation of Janus Au-PbS nanoparticles (NPs) by Au NPs-mediated spontaneous epitaxial nucleation and growth. The mechanism of formation of Janus Au-PbS NPs was investigated in detail.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!