Apparent diffusion coefficient (ADC) of magnetic resonance imaging (MRI) is an indispensable imaging technique in clinical neuroimaging that quantitatively assesses the diffusivity of water molecules within tissues using diffusion-weighted imaging (DWI). This study focuses on developing a robust machine learning (ML) model to predict the aggressiveness of gliomas according to World Health Organization (WHO) grading by analyzing patients' demographics, higher-order moments, and grey level co-occurrence matrix (GLCM) texture features of ADC. A population of 722 labeled MRI-ADC brain image slices from 88 human subjects was selected, where gliomas are labeled as glioblastoma multiforme (WHO-IV), high-grade glioma (WHO-III), and low-grade glioma (WHO I-II). Images were acquired using 3T-MR systems and a region of interest (ROI) was delineated manually over tumor areas. Skewness, kurtosis, and statistical texture features of GLCM (mean, variance, energy, entropy, contrast, homogeneity, correlation, prominence, and shade) were calculated using ADC values within ROI. The ANOVA f-test was utilized to select the best features to train an ML model. The data set was split into training (70%) and testing (30%) sets. The train set was fed into several ML algorithms and selected most promising ML algorithm using K-fold cross-validation. The hyper-parameters of the selected algorithm were optimized using random grid search technique. Finally, the performance of the developed model was assessed by calculating accuracy, precision, recall, and F1 values reported for the test set. According to the ANOVA f-test, three attributes; patient gender (1.48), GLCM energy (9.48), and correlation (13.86) that performed minimum scores were excluded from the dataset. Among the tested algorithms, the random forest classifier(0.8772 ± 0.0237) performed the highest mean-cross-validation score and selected to build the ML model which was able to predict tumor categories with an accuracy of 88.14% over the test set. The study concludes that the developed ML model using the above features except for patient gender, GLCM energy, and correlation, has high prediction accuracy in glioma grading. Therefore, the outcomes of this study enable to development of advanced tumor classification applications that assist in the decision-making process in a real-time clinical environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517003PMC
http://dx.doi.org/10.1038/s41598-023-41353-5DOI Listing

Publication Analysis

Top Keywords

machine learning
8
model predict
8
texture features
8
anova f-test
8
developed model
8
test set
8
patient gender
8
glcm energy
8
model
5
texture feature
4

Similar Publications

Machine learning (ML) is a powerful tool for the automated data analysis of molecular dynamics (MD) simulations. Recent studies showed that ML models can be used to identify protein-ligand unbinding pathways and understand the underlying mechanism. To expedite the examination of MD simulations, we constructed PathInHydro, a set of supervised ML models capable of automatically assigning unbinding pathways for the dissociation of gas molecules from [NiFe] hydrogenases, using the unbinding trajectories of CO and H from [NiFe] hydrogenase as a training set.

View Article and Find Full Text PDF

The accurate non-invasive detection and estimation of central aortic pressure waveforms (CAPW) are crucial for reliable treatments of cardiovascular system diseases. But the accuracy and practicality of current estimation methods need to be improved. Our study combines a meta-learning neural network and a physics-driven method to accurately estimate CAPW based on personalized physiological indicators.

View Article and Find Full Text PDF

Incidence of fall-from-height injuries and predictive factors for severity.

J Osteopath Med

January 2025

McAllen Department of Trauma, South Texas Health System, McAllen, TX, USA.

Context: The injuries caused by falls-from-height (FFH) are a significant public health concern. FFH is one of the most common causes of polytrauma. The injuries persist to be significant adverse events and a challenge regarding injury severity assessment to identify patients at high risk upon admission.

View Article and Find Full Text PDF

STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model.

Brief Bioinform

November 2024

Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.

Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.

View Article and Find Full Text PDF

Liquid-Metal-Based Multichannel Strain Sensor for Sign Language Gesture Classification Using Machine Learning.

ACS Appl Mater Interfaces

January 2025

Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.

Liquid metals are highly conductive like metallic materials and have excellent deformability due to their liquid state, making them rather promising for flexible and stretchable wearable sensors. However, patterning liquid metals on soft substrates has been a challenge due to high surface tension. In this paper, a new method is proposed to overcome the difficulties in fabricating liquid-state strain sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!