Background: Recent studies have shown that mTOR signaling plays an important role in synaptic plasticity. However, the function of S6K1, the mechanistic target of rapamycin kinase complex 1 (mTORC1) substrate, in epilepsy remains unknown.
Aims: Our present study aimed to explore the mechanism by which S6K1 is involved in chronic epilepsy.
Methods: First, immunostaining was used to measure neurite length and complexity in kainic acid (KA)-treated primary cultured neurons treated with PF-4708671, a highly selective S6K1 inhibitor. We obtained evidence for the role of S6K1 in protecting and promoting neuronal growth and development in vitro. Next, to explore the function and mechanism of the S6K1 inhibitor in epilepsy, a pilocarpine-induced chronic epileptic rat model was established. In vivo electrophysiology (including local field potentiation in CA1 and long-term potentiation), depression/anxiety-like behavior tests, and Golgi staining were performed to assess seizure behavior, power spectral density, depression/anxiety-like behavior, and synaptic plasticity. Furthermore, western blotting was applied to explore the potential molecular mechanisms.
Results: We found that inhibition of S6K1 expression significantly decreased seizures and depression-like behavior and restored power at low frequencies (1-80 Hz), especially in the delta, theta, and alpha bands, in chronic epileptic rats. In addition, PF-4708671 reversed the LTP defect in hippocampal CA3-CA1 and corrected spine loss and dendritic pathology.
Conclusion: In conclusion, our data suggest that inhibition of S6K1 attenuates seizures and depression in chronic epileptic rats via the rescue of synaptic structural and functional deficits. Given the wide range of physiological functions of mTOR, inhibition of its effective but relatively simple functional downstream molecules is a promising target for the development of drugs for epilepsy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945394 | PMC |
http://dx.doi.org/10.1111/cns.14475 | DOI Listing |
Funct Integr Genomics
January 2025
Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha City, Hunan Province, 410011, China.
Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.
View Article and Find Full Text PDFAnn Neurol
January 2025
Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA.
The long-term clinical outcomes and associated prognostic factors in contactin-associated protein-like 2 (CASPR2)-antibody diseases are unknown. A total of 75 participants with CASPR2 antibodies were longitudinally assessed for disability, quality-of-life, and chronic pain. Although most symptoms improved within 6 months of treatment, neuropathic pain and fatigue were the most immunotherapy refractory, and persisted for up to 6 years.
View Article and Find Full Text PDFEpilepsy Behav
January 2025
Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF UK; Division of Neuroscience, University of Sheffield, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF UK.
Objectives: Previous studies have identified features in patient's history and seizure descriptions supporting a clinical diagnosis of functional / dissociative seizures (FDS). However, most studies involved patients with chronic seizure disorders. This study explores the value of reported features for a clinical diagnosis of FDS in an adult population with a first presentation of transient loss of consciousness (TLoC).
View Article and Find Full Text PDFNeurophotonics
January 2025
Weill Cornell Medicine, Department of Neurological Surgery, New York, United States.
Significance: Despite the availability of various anti-seizure medications, nearly 1/3 of epilepsy patients experience drug-resistant seizures. These patients are left with invasive surgical options that do not guarantee seizure remission. The development of novel treatment options depends on elucidating the complex biology of seizures and brain networks.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Electrical and Computer Engineering Department, New York University, 370 Jay Street, Brooklyn, New York, New York, 10012-1126, UNITED STATES.
This study investigates speech decoding from neural signals captured by intracranial electrodes. Most prior works can only work with electrodes on a 2D grid (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!