BioNetGMMFit: estimating parameters of a BioNetGen model from time-stamped snapshots of single cells.

NPJ Syst Biol Appl

Steve and Cindy Rasmussen Institute for Genomics, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.

Published: September 2023

Mechanistic models are commonly employed to describe signaling and gene regulatory kinetics in single cells and cell populations. Recent advances in single-cell technologies have produced multidimensional datasets where snapshots of copy numbers (or abundances) of a large number of proteins and mRNA are measured across time in single cells. The availability of such datasets presents an attractive scenario where mechanistic models are validated against experiments, and estimated model parameters enable quantitative predictions of signaling or gene regulatory kinetics. To empower the systems biology community to easily estimate parameters accurately from multidimensional single-cell data, we have merged a widely used rule-based modeling software package BioNetGen, which provides a user-friendly way to code for mechanistic models describing biochemical reactions, and the recently introduced CyGMM, that uses cell-to-cell differences to improve parameter estimation for such networks, into a single software package: BioNetGMMFit. BioNetGMMFit provides parameter estimates of the model, supplied by the user in the BioNetGen markup language (BNGL), which yield the best fit for the observed single-cell, time-stamped data of cellular components. Furthermore, for more precise estimates, our software generates confidence intervals around each model parameter. BioNetGMMFit is capable of fitting datasets of increasing cell population sizes for any mechanistic model specified in the BioNetGen markup language. By streamlining the process of developing mechanistic models for large single-cell datasets, BioNetGMMFit provides an easily-accessible modeling framework designed for scale and the broader biochemical signaling community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516955PMC
http://dx.doi.org/10.1038/s41540-023-00299-0DOI Listing

Publication Analysis

Top Keywords

mechanistic models
16
single cells
12
signaling gene
8
gene regulatory
8
regulatory kinetics
8
software package
8
bionetgen markup
8
markup language
8
bionetgmmfit
5
model
5

Similar Publications

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.

View Article and Find Full Text PDF

Neutrophil Extracellular Traps Induce Brain Edema Around Intracerebral Hematoma via ERK-Mediated Regulation of MMP9 and AQP4.

Transl Stroke Res

December 2024

Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China.

Perihematomal edema (PHE) significantly aggravates secondary brain injury in patients with intracerebral hemorrhage (ICH), yet its detailed mechanisms remain elusive. Neutrophil extracellular traps (NETs) are known to exacerbate neurological deficits and worsen outcomes after stroke. This study explores the potential role of NETs in the pathogenesis of brain edema following ICH.

View Article and Find Full Text PDF

Blood storage lesion induces cytosolic and membrane changes driven in part by hemoglobin (Hb) oxidation reactions within red blood cells (RBCs). A novel gel formulation containing the antioxidant curcuminoids in a biocompatible solvent system was used to deliver curcumin into RBCs. Incubation of peroxide treated RBCs stored in PBS with curcumin gel led to a reduction in prooxidant ferrylHb and recovery in ATP.

View Article and Find Full Text PDF

LncRNA DNM1P35 sponges hsa-mir-326 to promote ovarian cancer progression.

Sci Rep

December 2024

Department of Gynaecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University/Wuxi Medical Center, Nanjing Medical University/Wuxi People's Hospital, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.

Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in cancer progression. We found lncRNA DNM1P35 is elevated in ovarian tumors compared to normal tissues, and demonstrated that lncRNA DNM1P35 promoted cancer cell proliferation, migration and invasion in SK-OV-3 and OVCAR-3 cell lines. Furthermore, lncRNA DNM1P35 also facilitated the epithelial-mesenchymal transition (EMT) of ovarian cancer cells.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) constitutes 90% of liver cancer cases and ranks as the third leading cause of cancer-related mortality, necessitating urgent development of alternative therapies. Lactoferrin (LF), a natural iron-binding glycoprotein with reported anticancer effects, is investigated for its potential in liver cancer treatment, an area with limited existing studies. This study focuses on evaluating LF's anti-liver cancer effects on HCC cells and assessing the preventive efficacy of oral LF administration in a murine model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!