Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Objective: Bone tumor is a kind of harmful orthopedic disease, there are benign and malignant points. Aiming at the problem that the accuracy of the existing machine learning algorithm for bone tumor image segmentation is not high, a bone tumor image segmentation algorithm based on improved full convolutional neural network which consists fully convolutional neural network (FCNN-4s) and conditional random field (CRF).
Methodology: The improved fully convolutional neural network (FCNN-4s) was used to perform coarse segmentation on preprocessed images. Batch normalization layers were added after each convolutional layer to accelerate the convergence speed of network training and improve the accuracy of the trained model. Then, a fully connected conditional random field (CRF) was fused to refine the bone tumor boundary in the coarse segmentation results, achieving the fine segmentation effect.
Results: The experimental results show that compared with the traditional convolutional neural network bone tumor image segmentation algorithm, the algorithm has a great improvement in segmentation accuracy and stability, the average Dice can reach 91.56%, the real-time performance is better.
Conclusion: Compared with the traditional convolutional neural network segmentation algorithm, the algorithm in this paper has a more refined structure, which can effectively solve the problem of over-segmentation and under-segmentation of bone tumors. The segmentation prediction has better real-time performance, strong stability, and can achieve higher segmentation accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509716 | PMC |
http://dx.doi.org/10.1016/j.jbo.2023.100502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!