A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bone tumor examination based on FCNN-4s and CRF fine segmentation fusion algorithm. | LitMetric

Background And Objective: Bone tumor is a kind of harmful orthopedic disease, there are benign and malignant points. Aiming at the problem that the accuracy of the existing machine learning algorithm for bone tumor image segmentation is not high, a bone tumor image segmentation algorithm based on improved full convolutional neural network which consists fully convolutional neural network (FCNN-4s) and conditional random field (CRF).

Methodology: The improved fully convolutional neural network (FCNN-4s) was used to perform coarse segmentation on preprocessed images. Batch normalization layers were added after each convolutional layer to accelerate the convergence speed of network training and improve the accuracy of the trained model. Then, a fully connected conditional random field (CRF) was fused to refine the bone tumor boundary in the coarse segmentation results, achieving the fine segmentation effect.

Results: The experimental results show that compared with the traditional convolutional neural network bone tumor image segmentation algorithm, the algorithm has a great improvement in segmentation accuracy and stability, the average Dice can reach 91.56%, the real-time performance is better.

Conclusion: Compared with the traditional convolutional neural network segmentation algorithm, the algorithm in this paper has a more refined structure, which can effectively solve the problem of over-segmentation and under-segmentation of bone tumors. The segmentation prediction has better real-time performance, strong stability, and can achieve higher segmentation accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509716PMC
http://dx.doi.org/10.1016/j.jbo.2023.100502DOI Listing

Publication Analysis

Top Keywords

bone tumor
24
convolutional neural
20
neural network
20
tumor image
12
image segmentation
12
segmentation algorithm
12
segmentation
11
fine segmentation
8
fully convolutional
8
network fcnn-4s
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!