Experimental Investigation of Thermodynamic Stabilization in Boron Imidazolate Frameworks (BIFs) Synthesized by Mechanochemistry.

J Phys Chem C Nanomater Interfaces

School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States.

Published: September 2023

This study experimentally explores the energetics for the formation of boron-imidazolate frameworks (BIFs), which are synthesized by mechanochemistry. The topologically similar frameworks employ the same tetratopic linker based on tetrakis(imidazolyl)boric acid but differ in the monovalent cation metal nodes. This permits assessment of the stabilizing effect of metal nodes in frameworks with sodalite (SOD) and diamondoid () topologies. The enthalpy of formation from endmembers (metal oxide and linker), which define thermodynamic stability of the structures, has been determined by use of acid solution calorimetry. The results show that heavier metal atoms in the node promote greater energetic stabilization of denser structures. Overall, in BIFs the relation between cation descriptors (ionic radius and electronegativity) and thermodynamic stability depends on framework topology. Thermodynamic stability increases with the metallic character of the cation employed as the metal node, independent of the framework topology. The results suggest unifying aspects for thermodynamic stabilization across MOF systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510708PMC
http://dx.doi.org/10.1021/acs.jpcc.3c04164DOI Listing

Publication Analysis

Top Keywords

thermodynamic stability
12
thermodynamic stabilization
8
frameworks bifs
8
bifs synthesized
8
synthesized mechanochemistry
8
metal nodes
8
framework topology
8
thermodynamic
5
metal
5
experimental investigation
4

Similar Publications

Design of High-Temperature Superconducting Ternary Hydride NaY3H20 at Moderate Pressure via Introducing Hydrogen Vacancies.

Inorg Chem

January 2025

State Key Laboratory of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China.

Superconducting hydrides exhibiting a high critical temperature () under extreme pressures have garnered significant interest. However, the extremely high pressures required for their stability have limited their practical applications. The current challenge is to identify high- superconducting hydrides that can be stabilized at lower or even ambient pressures.

View Article and Find Full Text PDF

Beyond equilibrium: roles of RNAs in condensate control.

Curr Opin Genet Dev

January 2025

MCD, Center for Integrative Biology (CBI), University of Toulouse, CNRS, Toulouse, France. Electronic address:

Membraneless subcompartments organize various activities in the cell nucleus. Some of them are formed through phase separation that is driven by the polymeric and multivalent nature of biomolecules. Here, we discuss the role of RNAs in regulating nuclear subcompartments.

View Article and Find Full Text PDF

Flexible framework of computing binding free energy using the energy representation theory of solution.

J Chem Phys

January 2025

Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.

Host-guest binding plays a crucial role in the functionality of various systems, and its efficiency is often quantified using the binding free energy, which represents the free-energy difference between the bound and dissociated states. Here, we propose a methodology to compute the binding free energy based on the energy representation (ER) theory of solution, which enables us to evaluate the free-energy difference between the systems of interest with the molecular dynamics (MD) simulations. Unlike the other free-energy methods, such as the Bennett acceptance ratio (BAR), the ER theory does not require the MD simulations for hypothetical intermediate states connecting the systems of interest, leading to reduced computational costs.

View Article and Find Full Text PDF

Inducing magnetic ordering in a non-ferrous layered double hydroxides (LDHs) instigates higher spin polarization, which leads to enhanced efficiency during oxygen evolution reaction (OER). In nano-sized magnetic materials, the concept of elongated grains drives domain alignment under the application of an external magnetic field. Hence, near the solid electrode interface, modified magnetohydrodynamics (MHD) positively impacts the electrocatalytic ability of non-ferrous nanocatalysts.

View Article and Find Full Text PDF

The present study focuses on the ground state mechanical, acoustic, thermodynamic and electronic transport properties of NaSbS polymorphs using the density functional theory (DFT) and semi-classical Boltzmann transport theory. The mechanical stability of the polymorphs is affirmed by the calculated elastic tensor. The calculated elastic properties asserted that all the polymorphs exhibit soft, brittle, anisotropic nature containing dominant covalent bonding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!