Magnetic force-based cell manipulation for tissue engineering.

APL Bioeng

Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.

Published: September 2023

AI Article Synopsis

  • Recent advancements in cell manipulation techniques, including 3D bioprinting and microfluidics, aim to reconstruct complex tissue structures.
  • Magnetic force-based manipulation offers a simpler and less invasive alternative, using methods like positive magnetophoresis with magnetic nanoparticles and negative magnetophoresis without them.
  • The review will cover major cell assembly approaches, detail magnetic force methods, showcase recent research applications, and address challenges in advancing this technology for tissue engineering.

Article Abstract

Cell manipulation techniques such as those based on three-dimensional (3D) bioprinting and microfluidic systems have recently been developed to reconstruct complex 3D tissue structures . Compared to these technologies, magnetic force-based cell manipulation is a simpler, scaffold- and label-free method that minimally affects cell viability and can rapidly manipulate cells into 3D tissue constructs. As such, there is increasing interest in leveraging this technology for cell assembly in tissue engineering. Cell manipulation using magnetic forces primarily involves two key approaches. The first method, positive magnetophoresis, uses magnetic nanoparticles (MNPs) which are either attached to the cell surface or integrated within the cell. These MNPs enable the deliberate positioning of cells into designated configurations when an external magnetic field is applied. The second method, known as negative magnetophoresis, manipulates diamagnetic entities, such as cells, in a paramagnetic environment using an external magnetic field. Unlike the first method, this technique does not require the use of MNPs for cell manipulation. Instead, it leverages the magnetic field and the motion of paramagnetic agents like paramagnetic salts (Gadobutrol, MnCl, etc.) to propel cells toward the field minimum, resulting in the assembly of cells into the desired geometrical arrangement. In this Review, we will first describe the major approaches used to assemble cells -3D bioprinting and microfluidics-based platforms-and then discuss the use of magnetic forces for cell manipulation. Finally, we will highlight recent research in which these magnetic force-based approaches have been applied and outline challenges to mature this technology for tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511261PMC
http://dx.doi.org/10.1063/5.0138732DOI Listing

Publication Analysis

Top Keywords

cell manipulation
24
magnetic force-based
12
tissue engineering
12
magnetic field
12
cell
10
magnetic
9
force-based cell
8
engineering cell
8
magnetic forces
8
external magnetic
8

Similar Publications

Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.

View Article and Find Full Text PDF

Plant pathogens pose significant threats to global cereal crop production, particularly for essential crops like rice and wheat, which are fundamental to global food security and provide nearly 40% of the global caloric intake. As the global population continues to rise, increasing agricultural production to meet food demands becomes even more critical. However, the production of these vital crops is constantly threatened by phytopathological diseases, especially those caused by fungal pathogens such as , the causative agent of rice blast disease, , responsible for head blight (FHB) in wheat, and , the source of Septoria tritici blotch (STB).

View Article and Find Full Text PDF

Unlabelled: Although fish possess an effective interferon (IFN) system to defend against viral infection, grass carp reovirus (GCRV) still causes epidemic hemorrhagic disease and tremendous economic loss in grass carp. Therefore, it is necessary to investigate the immune escape strategies employed by GCRV. In this study, we show that the structural protein VP4 of GCRV (encoded by the S6 segment) significantly restricts IFN expression by degrading stimulator of IFN genes (STING) through the autophagy-lysosome-dependent pathway.

View Article and Find Full Text PDF

Advances in modeling cellular state dynamics: integrating omics data and predictive techniques.

Anim Cells Syst (Seoul)

January 2025

Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Republic of Korea.

Dynamic modeling of cellular states has emerged as a pivotal approach for understanding complex biological processes such as cell differentiation, disease progression, and tissue development. This review provides a comprehensive overview of current approaches for modeling cellular state dynamics, focusing on techniques ranging from dynamic or static biomolecular network models to deep learning models. We highlight how these approaches integrated with various omics data such as transcriptomics, and single-cell RNA sequencing could be used to capture and predict cellular behavior and transitions.

View Article and Find Full Text PDF

Carbon-based perovskite solar cells (C-PSCs) have the advantages of high stability and low cost, but their mean efficiency has become an obstacle to commercialization. Defects, which are widely distributed on the surface and bulk of films, are an important factor in C-PSCs for low efficiency. The conventional post-treatment method through forming a low-dimensional (LD) perovskite layer usually fails in manipulating the bulk defects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!