Resolving causal genes for type 2 diabetes at loci implicated by genome-wide association studies (GWAS) requires integrating functional genomic data from relevant cell types. Chromatin features in endocrine cells of the pancreatic islet are particularly informative and recent studies leveraging chromosome conformation capture (3C) with Hi-C based methods have elucidated regulatory mechanisms in human islets. However, these genome-wide approaches are less sensitive and afford lower resolution than methods that target specific loci. To gauge the extent to which targeted 3C further resolves chromatin-mediated regulatory mechanisms at GWAS loci, we generated interaction profiles at 23 loci using next-generation (NG) capture-C in a human beta cell model (EndoC-βH1) and contrasted these maps with Hi-C maps in EndoC-βH1 cells and human islets and a promoter capture Hi-C map in human islets. We found improvements in assay sensitivity of up to 33-fold and resolved ~3.6X more chromatin interactions. At a subset of 18 loci with 25 co-localised GWAS and eQTL signals, NG Capture-C interactions implicated effector transcripts at five additional genetic signals relative to promoter capture Hi-C through physical contact with gene promoters. High resolution chromatin interaction profiles at selectively targeted loci can complement genome- and promoter-wide maps.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509606 | PMC |
http://dx.doi.org/10.12688/wellcomeopenres.18653.2 | DOI Listing |
Nuclear DNA is organized into a compact three-dimensional (3D) structure that impacts critical cellular processes. High-throughput chromosome conformation capture (Hi-C) is the most widely used method for measuring 3D genome architecture, while linear epigenomic assays, such as ATAC-seq, DNase-seq, and ChIP-seq, are extensively employed to characterize epigenomic regulation. However, the integrative analysis of chromatin interactions and associated epigenomic regulation remains challenging due to the pairwise nature of Hi-C data, mismatched resolution between Hi-C and epigenomic assays, and inconsistencies among analysis tools.
View Article and Find Full Text PDFGenome Biol
December 2024
State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
Background: Promoters serve as key elements in the regulation of gene transcription. In mammals, loop interactions between promoters and enhancers increase the complexity of the promoter-based regulatory networks. However, the identification of enhancer-promoter or promoter-related loops in Arabidopsis remains incomplete.
View Article and Find Full Text PDFSci Data
December 2024
State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China.
Wild relatives of wheat are valuable sources for enhancing the genetic diversity of common wheat. Aegilops comosa, an annual diploid species with an MM genome constitution, possesses numerous agronomically valuable traits that can be exploited for wheat improvement. In this study, we report a chromosome-level genome assembly of Ae.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 55 Zhongguancun East Road, Haidian District, Beijing 100190, China.
Topologically associating domains (TADs) are essential components of three-dimensional (3D) genome organization and significantly influence gene transcription regulation. However, accurately identifying TADs from sparse chromatin contact maps and exploring the structural and functional elements within TADs remain challenging. To this end, we develop TADGATE, a graph attention auto-encoder that can generate imputed maps from sparse Hi-C contact maps while adaptively preserving or enhancing the underlying topological structures, thereby facilitating TAD identification.
View Article and Find Full Text PDFPeerJ
December 2024
National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.
Background: Mungbean () is one of the most socio-economically important leguminous food crops of Asia and a rich source of dietary protein and micronutrients. Understanding its genetic makeup is crucial for genetic improvement and cultivar development.
Methods: In this study, we combined single-tube long-fragment reads (stLFR) sequencing technology with high-throughput chromosome conformation capture (Hi-C) technique to obtain a chromosome-level assembly of cultivar 'KUML4'.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!