What selects azeotropic pairs and governs the azeotropic conditions (composition and temperature) is an open and intriguing question. A combined simulation and experimental work presented here investigates this by considering ethanol-water mixtures. We find identical distributions of center-of-mass diffusion coefficients for ethanol and water molecules under the azeotropic condition (95.5 wt % ethanol +4.5 wt % water, = 351.1K). Moreover, the particle displacements show strong interspecies correlations at . Interestingly, simulated reorientation time distributions become identical at but at a composition different from that at which the translational diffusion distributions overlapped. Cluster analyses indicate that solutions at with ≤ 15 wt % are more microheterogeneous than those with higher water content, although no anomaly in the composition-dependent solution structural properties was detected. Ethanol-water and ethanol-ethanol interaction energies show pronounced nonideal composition dependence, but the size of the relative fluctuations in them remained small (∼0.5). Rare water-water H-bonding, predominant water-ethanol H-bonding, and a sizable population of "free" water molecules characterize the azeotropic solutions. The red edge excitation spectroscopic (REES) measurements with a dissolved anionic fluorescent dye, coumarin343 (C343), support the predicted solution microheterogeneity by showing a nonmonotonic composition dependence of the excitation energy-induced changes in the fluorescence emission spectral frequencies and bandwidths, the largest changes being under the azeotropic condition. Subsequent dynamic anisotropy measurements reveal a nonmonotonic composition dependence of C343 rotation times with a peak under the azeotropic condition. In summary, equalization of the component translational diffusion coefficients and solution microheterogeneity with regular composition dependence of the solution structure appear to characterize the ethanol-water azeotrope.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.3c02486 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!