Soft robotic patterning of liquids.

Sci Rep

Department of Industrial Engineering, University of Florence, Via di Santa Marta 3, 50139, Florence, Italy.

Published: September 2023

Patterning of two or more liquids, either homogeneous in each phase or mixed with particles (including biological matter, such as cells and proteins), by controlling their flow dynamics, is relevant to several applications. Examples include dynamic spatial confinement of liquids in microfluidic systems (such as lab-on-a-chip and organ-on-a-chip devices) or structuring of polymers to modulate various properties (such as strength, conductivity, transparency and surface finishing). State-of-the-art strategies use various technologies, including positioners, shakers and acoustic actuators, which often combine limited versatility of mixing with significant inefficiency, energy consumption, and noise, as well as tendency to increase the temperature of the liquids. Here, we describe a new kind of robotic mixers of liquids, based on electro-responsive smart materials (dielectric elastomer actuators). We show for the first time how an efficient soft robotic device can be used to produce, via combinations of rotations and translations, various spatial patterns in liquids and maintain them stable for a few minutes. Moreover, we show that, as compared to a conventional orbital shaker, the new type of robotic device can mix liquids with a higher efficacy (~ 94% relative to ~ 80%, after 8 min of mixing) and with a significantly lower increase of the liquids' temperature (+ 1 °C relative to + 5 °C, after 6 h of mixing). This is especially beneficial when mixing should occur according to controllable spatial features and should involve temperature-sensitive matter (such as biological cells, proteins, pre-polymers and other thermolabile molecules).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514051PMC
http://dx.doi.org/10.1038/s41598-023-41755-5DOI Listing

Publication Analysis

Top Keywords

soft robotic
8
patterning liquids
8
cells proteins
8
robotic device
8
liquids
7
robotic patterning
4
liquids patterning
4
liquids homogeneous
4
homogeneous phase
4
phase mixed
4

Similar Publications

Initial Pose Estimation Method for Robust LiDAR-Inertial Calibration and Mapping.

Sensors (Basel)

December 2024

Department of Intelligent Systems & Robotics, Chungbuk National University, Cheongju 28644, Republic of Korea.

Handheld LiDAR scanners, which typically consist of a LiDAR sensor, Inertial Measurement Unit, and processor, enable data capture while moving, offering flexibility for various applications, including indoor and outdoor 3D mapping in fields such as architecture and civil engineering. Unlike fixed LiDAR systems, handheld devices allow data collection from different angles, but this mobility introduces challenges in data quality, particularly when initial calibration between sensors is not precise. Accurate LiDAR-IMU calibration, essential for mapping accuracy in Simultaneous Localization and Mapping applications, involves precise alignment of the sensors' extrinsic parameters.

View Article and Find Full Text PDF

A Robust Method for Validating Orientation Sensors Using a Robot Arm as a High-Precision Reference.

Sensors (Basel)

December 2024

Antal Bejczy Center for Intelligent Robotics, Obuda University, 1034 Budapest, Hungary.

This paper presents a robust and efficient method for validating the accuracy of orientation sensors commonly used in practical applications, leveraging measurements from a commercial robotic manipulator as a high-precision reference. The key concept lies in determining the rotational transformations between the robot's base frame and the sensor's reference, as well as between the TCP (Tool Center Point) frame and the sensor frame, without requiring precise alignment. Key advantages of the proposed method include its independence from the exact measurement of rotations between the reference instrumentation and the sensor, systematic testing capabilities, and the ability to produce repeatable excitation patterns under controlled conditions.

View Article and Find Full Text PDF

Grapevines ( L.) are one of the most economically relevant crops worldwide, yet they are highly vulnerable to various diseases, causing substantial economic losses for winegrowers. This systematic review evaluates the application of remote sensing and proximal tools for vineyard disease detection, addressing current capabilities, gaps, and future directions in sensor-based field monitoring of grapevine diseases.

View Article and Find Full Text PDF

In recent years, the application of AI has expanded rapidly across various fields. However, it has faced challenges in establishing a foothold in medicine, particularly in invasive medical procedures. Medical algorithms and devices must meet strict regulatory standards before they can be approved for use on humans.

View Article and Find Full Text PDF

This paper presents the development of a robotic system for the rehabilitation and quality of life improvement of children with cerebral palsy (CP). The system consists of four modules and is based on a virtual humanoid robot that is meant to motivate and encourage children in their rehabilitation programs. The efficiency of the developed system was tested on two children with CP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!