Dual-Layer Detector Head CT to Maintain Image Quality While Reducing the Radiation Dose in Pediatric Patients.

AJNR Am J Neuroradiol

From the Department of Radiology (Z.T., L.Z., X.S., M.Y., J.M., H.W., J.W.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China

Published: October 2023

Background And Purpose: Radiation exposure in the CT diagnostic imaging process is a conspicuous concern in pediatric patients. This study aimed to evaluate whether 60-keV virtual monoenergetic images of the pediatric cranium in dual-layer CT can reduce the radiation dose while maintaining image quality compared with conventional images.

Materials And Methods: One hundred six unenhanced pediatric head scans acquired by dual-layer CT were retrospectively assessed. The patients were assigned to 2 groups of 53 and scanned with 250 and 180 mAs, respectively. Dose-length product values were retrieved, and noise, SNR, and contrast-to-noise ratio were calculated for each case. Two radiologists blinded to the reconstruction technique used evaluated image quality on a 5-point Likert scale. Statistical assessment was performed with ANOVA and the Wilcoxon test, adjusted for multiple comparisons.

Results: Mean dose-length product values were 717.47 (SD, 41.52) mGy×cm and 520.74 (SD, 42) mGy×cm for the 250- and 180-mAs groups, respectively. Irrespective of the radiation dose, noise was significantly lower, SNR and contrast-to-noise ratio were significantly higher, and subjective analysis revealed significant superiority of 60-keV virtual monoenergetic images compared with conventional images (all  < .001). SNR, contrast-to-noise ratio, and subjective evaluation in 60-keV virtual monoenergetic images were not significantly different between the 2 scan groups ( > .05). Radiation dose parameters were significantly lower in the 180-mAs group compared with the 250-mAs group ( < .001).

Conclusions: Dual-layer CT 60-keV virtual monoenergetic images allowed a radiation dose reduction of 28% without image-quality loss in pediatric cranial CT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10549953PMC
http://dx.doi.org/10.3174/ajnr.A7999DOI Listing

Publication Analysis

Top Keywords

radiation dose
20
image quality
12
60-kev virtual
12
virtual monoenergetic
12
monoenergetic images
12
pediatric patients
8
compared conventional
8
dose-length product
8
product values
8
snr contrast-to-noise
8

Similar Publications

Purpose: Immune checkpoint blockades (ICBs) are promising, however they do not fit all types of tumor, such as those lack of tumor antigens. Induction of potent anti-tumor T cell immunity is critical for cancer therapy. In this study, we investigated the efficacy of immunotherapy via the immunogenic cell death (ICD) dying tumor cells in mouse models of lung metastasis and tumorigenesis.

View Article and Find Full Text PDF

A systematic review of the effectiveness of leaded glasses for ensuring safety among healthcare professionals in fluoroscopy.

J Med Imaging Radiat Sci

January 2025

Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Medical Imaging and Radiotherapy, Rua 5 de Outubro, S. Martinho do Bispo, Coimbra 3046-854, Portugal. Electronic address:

Background: Currently, there is an increase in procedures across various clinical specialties involving the use of ionising radiation.

Objective: The primary objective of this systematic review is to analyse and compare the existing literature regarding the effectiveness of leaded glasses for healthcare professionals.

Methods: Comprehensive literature searches were conducted for relevant studies published between 2018 and 2023 using the Scopus, PubMed, and Web of Science databases according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology.

View Article and Find Full Text PDF

Purpose: To train and validate KB prediction models by merging a large multi-institutional cohort of whole breast irradiation (WBI) plans using tangential fields.

Methods: Ten institutions (INST1-INST10, 1481 patients) developed their KB-institutional models for left/right WBI (ten models for right and eight models for left). The transferability of models among centers was assessed based on the overlap of the geometric Principal Component (PC1) of each model when applied to other institutions and/or on the presence of significantly different optimization policies.

View Article and Find Full Text PDF

Multi-layer shielding optimization of a high activity Am-Be mixed field irradiation facility.

Appl Radiat Isot

January 2025

Experimental Nuclear Physics Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Egypt; Cyclotron Facility, Egyptian Atomic Energy Authority, Egypt.

Neutron and gamma-ray shielding design for a 30Ci (1.11TBq) Am-Be irradiation facility is studied using MCNP5 Monte Carlo simulation code. The study focuses on the optimization of the shielding layers of the previously planned neutron irradiation facility.

View Article and Find Full Text PDF

Objective: The study aims to systematically characterize the effect of CT parameter variations on images and lung radiomic and deep features, and to evaluate the ability of different image harmonization methods to mitigate the observed variations.

Approach: A retrospective in-house sinogram dataset of 100 low-dose chest CT scans was reconstructed by varying radiation dose (100%, 25%, 10%) and reconstruction kernels (smooth, medium, sharp). A set of image processing, convolutional neural network (CNNs), and generative adversarial network-based (GANs) methods were trained to harmonize all image conditions to a reference condition (100% dose, medium kernel).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!