The impact of the insecticide acetamiprid on the embryogenesis of the aquatic model organism Xenopus laevis.

Environ Toxicol Pharmacol

Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany. Electronic address:

Published: October 2023

Acetamiprid (ACT) is used extensively in agriculture worldwide, although data on ACT concentrations in natural water bodies and its impact on aquatic organisms are limited. To study whether ACT influences the embryogenesis of the South African clawed frog Xenopus laevis, embryos were incubated in ACT solutions from 0.01 to 100 mg/L. The low concentrations were chosen on the basis of concentrations already found in nature. ACT treatment leads to shorter embryo lengths, intestine malformation and reduced eye areas. It also affects the cranial cartilage and cardiac development as well as the embryo's mobility. The expression of tissue-specific marker genes is affected as well. Thus, our study suggests that pesticides may lead to an increased mortality of non-target organisms and emphasizes the importance of regular testing for ACT concentrations in nature. Our study provides an overview of ACT effects and can therefore be used as a basis for an ACT risk assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2023.104278DOI Listing

Publication Analysis

Top Keywords

xenopus laevis
8
concentrations nature
8
impact insecticide
4
insecticide acetamiprid
4
acetamiprid embryogenesis
4
embryogenesis aquatic
4
aquatic model
4
model organism
4
organism xenopus
4
laevis acetamiprid
4

Similar Publications

The amphibian metamorphosis assay (AMA) is an in vivo screen to assess potential interactions of chemicals with the amphibian thyroid system. Tadpoles are exposed for 21-days, then assessed for development and growth after 7 days and at test termination. This paper presents data from studies performed to satisfy test orders from the US EPA's Endocrine Disruptor Screening Program.

View Article and Find Full Text PDF

The brain and spinal cord originate from a neural tube that is preceded by a flat structure known as the neural plate during early embryogenesis. In humans, failure of the neural plate to convert into a tube by the fourth week of pregnancy leads to neural tube defects (NTDs), birth defects with serious neurological consequences. The signaling mechanisms governing the process of neural tube morphogenesis are unclear.

View Article and Find Full Text PDF

Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation.

Pigment Cell Melanoma Res

January 2025

Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.

Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells.

View Article and Find Full Text PDF

Directed collective cell migration is essential for morphogenesis, and chemical, electrical, mechanical and topological features have been shown to guide cell migration in vitro. Here we provide in vivo evidence showing that endogenous electric fields drive the directed collective cell migration of an embryonic stem cell population-the cephalic neural crest of Xenopus laevis. We demonstrate that the voltage-sensitive phosphatase 1 is a key component of the molecular mechanism, enabling neural crest cells to specifically transduce electric fields into a directional cue in vivo.

View Article and Find Full Text PDF

The Synthesis of GABA during the Tailbud Stage Is Required for Axial Elongation in embryos.

MicroPubl Biol

December 2024

Faculty of Environment and Information Studies, Keio University, Kanagawa, Japan.

In , axial elongation beyond the tailbud stage requires gamma-aminobutyric acid (GABA). However, the role of GABA synthesized during early development in this process remains unclear. In this study, by treating embryos with allylglycine (AG), an inhibitor of GABA synthesis, we observed a significant reduction in axial elongation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!